Abstract
Silicon nanocrystals (Si-nc) present several plus points as advanced fluorescent biomarkers but suffer from difficulties met in controlling their intrinsic photoluminescence (PL). Here, we first consider the reasons for this difficulty, showing results that support an interface defect-related origin of the PL. Attainment of a controlled PL emission would then require tuning of defects in the capping oxide, a hard and yet unaddressed task. Alternatively, we demonstrate the possible use of Si-nc as antennas, or sensitizers, of a luminescent rare-earth ion in an engineered fluorophore. In this approach the relatively high and broadband optical absorption of Si-nc was exploited, keeping the advantages of a near-infrared inorganic light emitter. Another fundamental part of the assessment of Si-nc for bioimaging is their biocompatibility. Here, we report toxicity tests based on the lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays on epithelial cells and fibroblasts, confirming that Si-nc in concentration suitable for luminescent labeling do not affect significantly the cells viability.
Similar content being viewed by others
References
J. Probst, S. Dembski, M. Milde, and S. Rupp: Luminescent nanoparticles and their use for in vitro and in vivo diagnostics. Expert Rev. Mol. Diagn. 12, 49 (2012).
F. Wang, W.B. Tan, Y. Zhang, X. Fan, and M. Wang: Luminescent nanomaterials for biological labelling. Nanotechnology 17, R1–R13 (2006).
J.K. Klostranec and W.C. Chen: Quantum dots in biological and biomedical research: Recent progress and present challenges. Adv. Mater. 18, 1953 (2006).
W.J. Parak, T. Pellegrino, and C. Plank: Labelling of cells with quantum dots. Nanotechnology 16, R9–R25 (2005).
A.M. Derfus, W.C. Chan, and S.N. Bathia: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11 (2004).
Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by L. Pavesi and R. Turan (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010).
L.T. Canham: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).
S.M. Prokes, W.E. Carlos, and O.J. Glembocki: Defect-based model for room-temperature visible photoluminescence in porous silicon. Phys. Rev. B 50, 17093 (1994).
G.V. Prakash, N. Daldosso, E. Degoli, F. Iacona, M. Cazzanelli, Z. Gaburro, D. Pacifici, F. Priolo, C. Arcangeli, A.B. Filonov, S. Ossicini, and L. Pavesi: Structural and optical properties of PECVD grown silicon nanocrystals. J. Nanosci. Tech. 1, 159 (2001).
R.J. Walters, J. Kalkman, A. Polman, H.A. Atwater, and M.J.A. de Dood: Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Phys. Rev. B 73, 132302 (2006).
F. Huisken, G. Ledoux, O. Guillois, and C. Reynaud: Light emitting silicon nanocrystals from laser pyrolysis. Adv. Mater. 14, 1861 (2002).
R. D’Amato, M. Falconieri, F. Fabbri, V. Bello, and E. Borsella: Preparation of luminescent Si nanoparticles by tailoring the size, crystallinity and surface composition. J. Nanopart. Res. 12, 1845 (2010).
F. Lacour, O. Guillois, X. Portier, H. Perez, N. Herlin, and C. Reynaud: Laser pyrolysis synthesis and characterization of luminescent silicon nanocrystals. Physica E 38, 1 (2007).
G. Belomoin, J. Therrien, and M. Nayfeh: Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles. Appl. Phys. Lett. 77, 779 (2000).
X. Li, Y. He, S.S. Talukdar, and M.T. Swihart: Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19, 8490 (2003).
L. Mangolini, E. Thimsen, and U. Kortshagen: High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655 (2005).
J. Choi, N.S. Wang, and V. Reipa: Photoassisted tuning of silicon nanocrystal photoluminescence. Langmuir 23, 3388 (2007).
J. Veinot: Surface passivation and functionalization of Si nanocrystals, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by L. Pavesi and R. Turan (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 155.
Q. Wang, H. Ni, A. Pietzsch, F. Hennies, Y. Bao, and Y. Chao: Synthesis of water-dispersible photoluminescent silicon nanoparticles and their use in biological fluorescent imaging. J. Nanopart. Res. 13, 405 (2011).
Z.F. Li and E. Ruckenstein: Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 4, 1463 (2004).
J.H. Warner, A. Hoshino, K. Yamamoto, and R.D. Tilley: Water-soluble photoluminescent silicon quantum dots. Angew. Chem. 117, 4626 (2005).
F. Erogbogbo, K.T. Yong, I. Roy, G.X. Xu, P.N. Prasad, and M.T. Swihart: Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).
Y. He, Y. Zhong, F. Peng, X. Wei, Y. Su, Y. Lu, S. Su, W. Gu, L. Liao, and S.T. Lee: One-pot microwave synthesis of water-dispersible, ultraphoto-and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 133, 14192 (2011).
E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, and D. Wang: Biomedical and sensor applications of silicon nanoparticles, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by L. Pavesi and R. Turan (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 507.
G. He, Q. Zheng, K.T. Yong, F. Erogbogbo, M.T. Swihart, and P.N. Prasad: Two-and three-photon absorption and frequency upconverted emission of silicon quantum dots. Nano Lett. 8, 2688 (2008).
M. Falconieri, R. D’Amato, F. Fabbri, M. Carpanese, and E. Borsella: Two-photon excitation of luminescence in pyrolytic silicon nanocrystals. Physica E 41, 951 (2009).
F. Erogbogbo, K.T. Yong, I. Roy, R. Hu, W.C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M.T. Swihart, and P.N. Prasad: In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5, 413 (2011).
F. Erogbogbo, C. Tien, C. Chang, K. Yong, W. Law, H. Ding, I. Roy, M. Swihart, and P. Prasad: Bioconjugation of luminescent silicon quantum dots for selective up-take by cancer cells. Bioconjugate Chem. 22, 1081 (2011).
C. Tu, M. Xuchu, P. Pantazis, S.M. Kauzlarich, and A.Y. Louie: Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J. Am. Chem. Soc. 132, 2016 (2010).
X.D. Pi, L. Mangolini, S.A. Campbell, and U. Kortshagen: Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Phys. Rev. B 75, 085423 (2007).
J. Vincent, V. Maurice, X. Paquez, O. Sublemontier, Y. Laconte, O. Guillois, C. Reynaud, N. Herlin-Boime, O. Raccurt, and F. Tardif: Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J. Nanopart. Res. 12, 39 (2010).
R.J. Clark, M.K.M Dang, and J.G.C Veinot: Exploration of organic acid chain length on water-soluble silicon quantum dot surfaces. Langmuir 26, 15657 (2010).
S. Sato and M. Swihart: Propionic-acid-terminated silicon nanoparticles: Synthesis and optical characterization. Chem. Mater. 19, 680 (2006).
C. Delarue, G. Allan, and M. Lannoo: Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B 48, 11024 (1993).
M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, and C. Delarue: Electronic states and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 82, 197 (1999).
A. Pudzer, A.J. Williamson, J.C. Grossman, and G. Galli: Computational studies of the optical emission of silicon nanocrystals. J. Am. Chem. Soc. 125, 2786 (2003).
Y.D. Glinka, S.H. Lin, L.P. Hwang, and Y.T. Chen: Photoluminescence from mesoporous silica: Similarity of properties to porous silicon. Appl. Phys. Lett. 77, 3968 (2000).
Y.D. Glinka, A.S. Zyubin, A.M. Mobel, S.H. Lin, L.P. Hwang, and Y.T. Chen: Photoluminescence from mesoporous silica akin to that from nanoscale silicon: The nature of light-emitters. Chem. Phys. Lett. 358, 180 (2002).
S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O.I. Lebedev, G. Van Tendeloo, and V.V. Moshchalkov: Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3, 174 (2008).
J. Choi, N.S. Wang, and V. Reipa: Conjugation of the photoluminescent silicon nanoparticles to streptavidin. Bioconjugate Chem. 22, 1081 (2008).
M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto: 1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198 (1997).
F. Priolo, G. Franzò, D. Pacifici, V. Vinciguerra, F. Iacona, and A. Irrera: Role of energy transfer in the optical properties of un-doped and Er-doped interacting Si nanocrystals. J. Appl. Phys. 89, 264 (2001).
T. Roschuk, J. Li, J. Wojcik, P. Mascher, and I.D. Calder: Lighting applications of rare-earth-doped silicon oxides, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by L. Pavesi and R. Turan (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 487.
D. Kovalev, H. Heckler, G. Polisski, and F. Koch: Optical properties of Si nanocrystals. Phys. Status Solidi B 215, 871 (1999).
U. Goesele: Shedding new light on silicon. Nat. Nanotechnol. 3, 134 (2008).
E. Borsella, R. D’Amato, F. Fabbri, M. Falconieri, E. Trave, V. Bello, G. Mattei, Y. Nie, and D. Wang: On the role of non-bridging oxygen centers in the red luminescence emission from silicon nanocrystals. Phys. Status Solidi C 8, 974 (2011).
M. Ben-Chorin, B. Averboukh, D. Kovalev, G. Polisski, and F. Koch: Influence of quantum confinement on the critical points of the band structure of Si. Phys. Rev. Lett. 77, 763 (1996).
L. Skuja: The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. J. Non-Cryst. Solids 179, 51 (1994).
S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama: Various types of nonbridging oxygen hole center in high-purity silica glass. J. Appl. Phys. 68, 1212 (1990).
A.S. Zyubin, Y.D. Glinka, A.M. Mebel, S.H. Lin, L.P. Hwang, and Y.T. Chen: Red and near-infrared photoluminescence from silica-based nanoscale materials: Experimental investigation and quantum-chemical modeling. J. Chem. Phys. B 116, 281 (2002).
L. Pavesi and M. Ceschini: Stretched-exponential decay of the luminescence in porous silicon. Phys. Rev. B 48, 17625 (1993).
H. Jayatilleka, D. Diamare, M. Wojdak, A.J. Kenyon, C.R. Mokry, P.J. Simpson, A.P. Knights, I. Crowe, and M.P. Halsall: Probing energy transfer in an ensemble of silicon nanocrystals. J. Appl. Phys. 110, 033522 (2011).
E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A. Leonard, B. Price, M.C. Cheng, P. Decuzzi, J. Tour, F. Robertson, and M. Ferrari: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151 (2008).
G. Fotakis and J.A. Timbrell: In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 160, 171 (2006).
R. Zange, Y. Li, and T. Kissel: Biocompatibility testing of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to a central poly(ethylene oxide) B block under in vitro conditions using different L929 mouse fibroblasts cell culture models. J. Controlled Release 56, 249 (1998).
M. Nordin, A. Wieslander, E. Martinson, and P. Kjellstrand: Effects of exposure period of acetylsalicylic acid, paracetamol and isopropanol on L929 cytotoxicity. Toxicol. In Vitro 5, 449 (1991).
K. Fujioka, M. Hiruoka, K. Sato, N. Manabe, R. Myasaka, S. Hanada, A. Hoshimo, R.D. Tilley, Y. Manome, K. Hirakuri, and K. Yamamoto: Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19, 1 (2008).
S. Bhattacharjee, L.H.J. de Haan, N.M. Evers, X. Jiang, A.T.M Marcelis, H. Zuilhof, I.M.C.M. Rietjens, and G.M. Alink: Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part. Fibre Toxicol. 7, 25 (2010).
X.L. Gu, S.B. Howell, and M.J. Sailor: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 5, 3651 (2011).
Acknowledgments
We wish to thank Prof. Giovanni Mattei and Dr. V. Bello for the valuable long lasting cooperation on HR-TEM characterization of Si-based nanoparticles, Prof. D. Wang and Prof. F. Huisken for helpful discussion, Dr. Fabio Fabbri for significant contribution in the laser synthesis of nanoparticles, Mr. Gaetano Terranova and Mr. Paolo Calvelli for skillful technical support in carrying out the experimental activity. Part of the funding for our research in this field came from the EC FP6 Life-Science-Health Project BONSAI “Bioimaging with smart functional nanoparticles” (Grant No. 037639).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Borsella, E., D’Amato, R., Falconieri, M. et al. An outlook on the potential of Si nanocrystals as luminescent probes for bioimaging. Journal of Materials Research 28, 193–204 (2013). https://doi.org/10.1557/jmr.2012.295
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.295