Skip to main content
Log in

An outlook on the potential of Si nanocrystals as luminescent probes for bioimaging

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Silicon nanocrystals (Si-nc) present several plus points as advanced fluorescent biomarkers but suffer from difficulties met in controlling their intrinsic photoluminescence (PL). Here, we first consider the reasons for this difficulty, showing results that support an interface defect-related origin of the PL. Attainment of a controlled PL emission would then require tuning of defects in the capping oxide, a hard and yet unaddressed task. Alternatively, we demonstrate the possible use of Si-nc as antennas, or sensitizers, of a luminescent rare-earth ion in an engineered fluorophore. In this approach the relatively high and broadband optical absorption of Si-nc was exploited, keeping the advantages of a near-infrared inorganic light emitter. Another fundamental part of the assessment of Si-nc for bioimaging is their biocompatibility. Here, we report toxicity tests based on the lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays on epithelial cells and fibroblasts, confirming that Si-nc in concentration suitable for luminescent labeling do not affect significantly the cells viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Table II
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Probst, S. Dembski, M. Milde, and S. Rupp: Luminescent nanoparticles and their use for in vitro and in vivo diagnostics. Expert Rev. Mol. Diagn. 12, 49 (2012).

    CAS  Google Scholar 

  2. F. Wang, W.B. Tan, Y. Zhang, X. Fan, and M. Wang: Luminescent nanomaterials for biological labelling. Nanotechnology 17, R1–R13 (2006).

    CAS  Google Scholar 

  3. J.K. Klostranec and W.C. Chen: Quantum dots in biological and biomedical research: Recent progress and present challenges. Adv. Mater. 18, 1953 (2006).

    CAS  Google Scholar 

  4. W.J. Parak, T. Pellegrino, and C. Plank: Labelling of cells with quantum dots. Nanotechnology 16, R9–R25 (2005).

    CAS  Google Scholar 

  5. A.M. Derfus, W.C. Chan, and S.N. Bathia: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11 (2004).

    CAS  Google Scholar 

  6. Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by L. Pavesi and R. Turan (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010).

    Google Scholar 

  7. L.T. Canham: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).

    CAS  Google Scholar 

  8. S.M. Prokes, W.E. Carlos, and O.J. Glembocki: Defect-based model for room-temperature visible photoluminescence in porous silicon. Phys. Rev. B 50, 17093 (1994).

    CAS  Google Scholar 

  9. G.V. Prakash, N. Daldosso, E. Degoli, F. Iacona, M. Cazzanelli, Z. Gaburro, D. Pacifici, F. Priolo, C. Arcangeli, A.B. Filonov, S. Ossicini, and L. Pavesi: Structural and optical properties of PECVD grown silicon nanocrystals. J. Nanosci. Tech. 1, 159 (2001).

    CAS  Google Scholar 

  10. R.J. Walters, J. Kalkman, A. Polman, H.A. Atwater, and M.J.A. de Dood: Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Phys. Rev. B 73, 132302 (2006).

    Google Scholar 

  11. F. Huisken, G. Ledoux, O. Guillois, and C. Reynaud: Light emitting silicon nanocrystals from laser pyrolysis. Adv. Mater. 14, 1861 (2002).

    CAS  Google Scholar 

  12. R. D’Amato, M. Falconieri, F. Fabbri, V. Bello, and E. Borsella: Preparation of luminescent Si nanoparticles by tailoring the size, crystallinity and surface composition. J. Nanopart. Res. 12, 1845 (2010).

    Google Scholar 

  13. F. Lacour, O. Guillois, X. Portier, H. Perez, N. Herlin, and C. Reynaud: Laser pyrolysis synthesis and characterization of luminescent silicon nanocrystals. Physica E 38, 1 (2007).

    Google Scholar 

  14. G. Belomoin, J. Therrien, and M. Nayfeh: Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles. Appl. Phys. Lett. 77, 779 (2000).

    CAS  Google Scholar 

  15. X. Li, Y. He, S.S. Talukdar, and M.T. Swihart: Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19, 8490 (2003).

    CAS  Google Scholar 

  16. L. Mangolini, E. Thimsen, and U. Kortshagen: High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655 (2005).

    CAS  Google Scholar 

  17. J. Choi, N.S. Wang, and V. Reipa: Photoassisted tuning of silicon nanocrystal photoluminescence. Langmuir 23, 3388 (2007).

    CAS  Google Scholar 

  18. J. Veinot: Surface passivation and functionalization of Si nanocrystals, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by L. Pavesi and R. Turan (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 155.

    Google Scholar 

  19. Q. Wang, H. Ni, A. Pietzsch, F. Hennies, Y. Bao, and Y. Chao: Synthesis of water-dispersible photoluminescent silicon nanoparticles and their use in biological fluorescent imaging. J. Nanopart. Res. 13, 405 (2011).

    CAS  Google Scholar 

  20. Z.F. Li and E. Ruckenstein: Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 4, 1463 (2004).

    CAS  Google Scholar 

  21. J.H. Warner, A. Hoshino, K. Yamamoto, and R.D. Tilley: Water-soluble photoluminescent silicon quantum dots. Angew. Chem. 117, 4626 (2005).

    Google Scholar 

  22. F. Erogbogbo, K.T. Yong, I. Roy, G.X. Xu, P.N. Prasad, and M.T. Swihart: Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).

    CAS  Google Scholar 

  23. Y. He, Y. Zhong, F. Peng, X. Wei, Y. Su, Y. Lu, S. Su, W. Gu, L. Liao, and S.T. Lee: One-pot microwave synthesis of water-dispersible, ultraphoto-and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 133, 14192 (2011).

    CAS  Google Scholar 

  24. E. Borsella, M. Falconieri, N. Herlin, V. Loschenov, G. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, and D. Wang: Biomedical and sensor applications of silicon nanoparticles, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by L. Pavesi and R. Turan (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 507.

    Google Scholar 

  25. G. He, Q. Zheng, K.T. Yong, F. Erogbogbo, M.T. Swihart, and P.N. Prasad: Two-and three-photon absorption and frequency upconverted emission of silicon quantum dots. Nano Lett. 8, 2688 (2008).

    CAS  Google Scholar 

  26. M. Falconieri, R. D’Amato, F. Fabbri, M. Carpanese, and E. Borsella: Two-photon excitation of luminescence in pyrolytic silicon nanocrystals. Physica E 41, 951 (2009).

    CAS  Google Scholar 

  27. F. Erogbogbo, K.T. Yong, I. Roy, R. Hu, W.C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M.T. Swihart, and P.N. Prasad: In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5, 413 (2011).

    CAS  Google Scholar 

  28. F. Erogbogbo, C. Tien, C. Chang, K. Yong, W. Law, H. Ding, I. Roy, M. Swihart, and P. Prasad: Bioconjugation of luminescent silicon quantum dots for selective up-take by cancer cells. Bioconjugate Chem. 22, 1081 (2011).

    CAS  Google Scholar 

  29. C. Tu, M. Xuchu, P. Pantazis, S.M. Kauzlarich, and A.Y. Louie: Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J. Am. Chem. Soc. 132, 2016 (2010).

    CAS  Google Scholar 

  30. X.D. Pi, L. Mangolini, S.A. Campbell, and U. Kortshagen: Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Phys. Rev. B 75, 085423 (2007).

    Google Scholar 

  31. J. Vincent, V. Maurice, X. Paquez, O. Sublemontier, Y. Laconte, O. Guillois, C. Reynaud, N. Herlin-Boime, O. Raccurt, and F. Tardif: Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J. Nanopart. Res. 12, 39 (2010).

    CAS  Google Scholar 

  32. R.J. Clark, M.K.M Dang, and J.G.C Veinot: Exploration of organic acid chain length on water-soluble silicon quantum dot surfaces. Langmuir 26, 15657 (2010).

    CAS  Google Scholar 

  33. S. Sato and M. Swihart: Propionic-acid-terminated silicon nanoparticles: Synthesis and optical characterization. Chem. Mater. 19, 680 (2006).

    Google Scholar 

  34. C. Delarue, G. Allan, and M. Lannoo: Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B 48, 11024 (1993).

    Google Scholar 

  35. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, and C. Delarue: Electronic states and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 82, 197 (1999).

    CAS  Google Scholar 

  36. A. Pudzer, A.J. Williamson, J.C. Grossman, and G. Galli: Computational studies of the optical emission of silicon nanocrystals. J. Am. Chem. Soc. 125, 2786 (2003).

    Google Scholar 

  37. Y.D. Glinka, S.H. Lin, L.P. Hwang, and Y.T. Chen: Photoluminescence from mesoporous silica: Similarity of properties to porous silicon. Appl. Phys. Lett. 77, 3968 (2000).

    CAS  Google Scholar 

  38. Y.D. Glinka, A.S. Zyubin, A.M. Mobel, S.H. Lin, L.P. Hwang, and Y.T. Chen: Photoluminescence from mesoporous silica akin to that from nanoscale silicon: The nature of light-emitters. Chem. Phys. Lett. 358, 180 (2002).

    CAS  Google Scholar 

  39. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O.I. Lebedev, G. Van Tendeloo, and V.V. Moshchalkov: Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3, 174 (2008).

    CAS  Google Scholar 

  40. J. Choi, N.S. Wang, and V. Reipa: Conjugation of the photoluminescent silicon nanoparticles to streptavidin. Bioconjugate Chem. 22, 1081 (2008).

    Google Scholar 

  41. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto: 1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198 (1997).

    CAS  Google Scholar 

  42. F. Priolo, G. Franzò, D. Pacifici, V. Vinciguerra, F. Iacona, and A. Irrera: Role of energy transfer in the optical properties of un-doped and Er-doped interacting Si nanocrystals. J. Appl. Phys. 89, 264 (2001).

    CAS  Google Scholar 

  43. T. Roschuk, J. Li, J. Wojcik, P. Mascher, and I.D. Calder: Lighting applications of rare-earth-doped silicon oxides, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by L. Pavesi and R. Turan (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, 2010); p. 487.

    Google Scholar 

  44. D. Kovalev, H. Heckler, G. Polisski, and F. Koch: Optical properties of Si nanocrystals. Phys. Status Solidi B 215, 871 (1999).

    CAS  Google Scholar 

  45. U. Goesele: Shedding new light on silicon. Nat. Nanotechnol. 3, 134 (2008).

    CAS  Google Scholar 

  46. E. Borsella, R. D’Amato, F. Fabbri, M. Falconieri, E. Trave, V. Bello, G. Mattei, Y. Nie, and D. Wang: On the role of non-bridging oxygen centers in the red luminescence emission from silicon nanocrystals. Phys. Status Solidi C 8, 974 (2011).

    Google Scholar 

  47. M. Ben-Chorin, B. Averboukh, D. Kovalev, G. Polisski, and F. Koch: Influence of quantum confinement on the critical points of the band structure of Si. Phys. Rev. Lett. 77, 763 (1996).

    CAS  Google Scholar 

  48. L. Skuja: The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. J. Non-Cryst. Solids 179, 51 (1994).

    CAS  Google Scholar 

  49. S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama: Various types of nonbridging oxygen hole center in high-purity silica glass. J. Appl. Phys. 68, 1212 (1990).

    CAS  Google Scholar 

  50. A.S. Zyubin, Y.D. Glinka, A.M. Mebel, S.H. Lin, L.P. Hwang, and Y.T. Chen: Red and near-infrared photoluminescence from silica-based nanoscale materials: Experimental investigation and quantum-chemical modeling. J. Chem. Phys. B 116, 281 (2002).

    CAS  Google Scholar 

  51. L. Pavesi and M. Ceschini: Stretched-exponential decay of the luminescence in porous silicon. Phys. Rev. B 48, 17625 (1993).

    CAS  Google Scholar 

  52. H. Jayatilleka, D. Diamare, M. Wojdak, A.J. Kenyon, C.R. Mokry, P.J. Simpson, A.P. Knights, I. Crowe, and M.P. Halsall: Probing energy transfer in an ensemble of silicon nanocrystals. J. Appl. Phys. 110, 033522 (2011).

    Google Scholar 

  53. E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A. Leonard, B. Price, M.C. Cheng, P. Decuzzi, J. Tour, F. Robertson, and M. Ferrari: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151 (2008).

    CAS  Google Scholar 

  54. G. Fotakis and J.A. Timbrell: In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 160, 171 (2006).

    CAS  Google Scholar 

  55. R. Zange, Y. Li, and T. Kissel: Biocompatibility testing of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to a central poly(ethylene oxide) B block under in vitro conditions using different L929 mouse fibroblasts cell culture models. J. Controlled Release 56, 249 (1998).

    CAS  Google Scholar 

  56. M. Nordin, A. Wieslander, E. Martinson, and P. Kjellstrand: Effects of exposure period of acetylsalicylic acid, paracetamol and isopropanol on L929 cytotoxicity. Toxicol. In Vitro 5, 449 (1991).

    CAS  Google Scholar 

  57. K. Fujioka, M. Hiruoka, K. Sato, N. Manabe, R. Myasaka, S. Hanada, A. Hoshimo, R.D. Tilley, Y. Manome, K. Hirakuri, and K. Yamamoto: Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19, 1 (2008).

    Google Scholar 

  58. S. Bhattacharjee, L.H.J. de Haan, N.M. Evers, X. Jiang, A.T.M Marcelis, H. Zuilhof, I.M.C.M. Rietjens, and G.M. Alink: Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part. Fibre Toxicol. 7, 25 (2010).

    Google Scholar 

  59. X.L. Gu, S.B. Howell, and M.J. Sailor: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 5, 3651 (2011).

    Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. Giovanni Mattei and Dr. V. Bello for the valuable long lasting cooperation on HR-TEM characterization of Si-based nanoparticles, Prof. D. Wang and Prof. F. Huisken for helpful discussion, Dr. Fabio Fabbri for significant contribution in the laser synthesis of nanoparticles, Mr. Gaetano Terranova and Mr. Paolo Calvelli for skillful technical support in carrying out the experimental activity. Part of the funding for our research in this field came from the EC FP6 Life-Science-Health Project BONSAI “Bioimaging with smart functional nanoparticles” (Grant No. 037639).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Falconieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsella, E., D’Amato, R., Falconieri, M. et al. An outlook on the potential of Si nanocrystals as luminescent probes for bioimaging. Journal of Materials Research 28, 193–204 (2013). https://doi.org/10.1557/jmr.2012.295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.295

Navigation