Skip to main content

Advertisement

Log in

Oscillatory thickness dependences of the Seebeck coefficient in nanostructures based on compounds IV–VI

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermoelectric parameters have been investigated depending on the thickness of the layer of nanostructures IV–VI (PbS, PbSe, PbTe, and SnTe). Based on the theoretical model of quantum well (QW) with infinitely high walls, it is demonstrated that this model explains nonmonotonous behavior of the Seebeck coefficient S with the change of the well width. On the basis of oscillation period Δdexp, we have approached the theoretical d-dependence of the coefficient S to the experimental one and defined the value of the Fermi energy in the corresponding nanostructures. It has been established that the minimum QW width dmin, where the first energy level coincides with the Fermi energy, is equal to the oscillation period of the Seebeck coefficient in this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
TABLE I.
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. J.H. Davies: The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge University Press, Cambridge, England, 1998), p. 451.

    Google Scholar 

  2. M.S. Dresselhaus, G. Ghen, M.I. Rang, R. Yang, H. Lee, D. Wang, Z. Ren, J-P. Fleurial, and P. Gogna: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).

    Article  CAS  Google Scholar 

  3. L.D. Hicks, T.C. Harman, X. Sun, and M.S. Dresselhaus: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B: Condens. Matter 53, R10493 (1996).

    Article  CAS  Google Scholar 

  4. A. Casian, I. Sur, H. Scherrer, and Z. Dashevsky: Thermoelectric properties of n-type PbTe/Pb1-xEuxTe quantum wells. Phys. Rev. B 61 (23), 15965 (2000).

    Article  CAS  Google Scholar 

  5. T.C. Harman, D.L. Spears, and M.J. Manfra: High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Mater. 25, 1121 (1996).

    Article  CAS  Google Scholar 

  6. I. Sur, A. Casian, and A. Baladin: Electronic thermal conductivity and thermoelectric figure of merit of n-type PbTe/PbEuTe quantum wells. Phys. Rev. B 69, 035306 (2004).

    Article  Google Scholar 

  7. E.I. Rogacheva, O.N. Nashchekina, Y.O. Vekhov, M.S. Dresselhaus, and S.B. Cronin: Effect of thickness on the thermoelectric properties of PbS thin films. Thin Solid Films 423, 115 (2003).

    Article  CAS  Google Scholar 

  8. E.I. Rogacheva, T.V. Tavrina, O.N. Nashchekina, S.N. Grigorov, K.A. Nasedkin, M.S. Dresselhaus, and S.B. Cronin: Quantum-size effects in PbSe quantum wells. Appl. Phys. Lett. 80 (15), 2690 (2002).

    Article  CAS  Google Scholar 

  9. E.I. Rogacheva, O.N. Nashchekina, S.N. Grigorov, M.S. Dresselhaus, and S.B. Cronin: Oscillatory behaviour of the transport properties in PbTe quantum wells. Nanotechnology 14, 53 (2003).

    Article  CAS  Google Scholar 

  10. E.I. Rogacheva, O.N. Nashchekina, A.V. Meriuts, S.G. Lyubchenko, M.S. Dresselhaus, and G. Dresselhaus: Quantum-size effects in n-PbTe/p-SnTe/n-PbTe heterostructures. Appl. Phys. Lett. 86, 063103 (2005).

    Article  Google Scholar 

  11. Y.-M. Lin and M.S. Dresselhaus: Thermoelectric properties of superlattice nanowires. Phys. Rev. B 68, 075304 (2003).

    Article  Google Scholar 

  12. G. Springholz, V. Holy, M. Pinczolits, P. Bauer, and G. Bauer: Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant. Science 282, 734 (1998).

    Article  CAS  Google Scholar 

  13. G. Springholz, M. Pinczolits, P. Mayer, V. Holy, G. Bauer, H. Kang, and L. Salamanca-Riba: Tuning of vertical and lateral correlations in self-organized PbSe/Pb1-xEuxTe quantum dot superlattices. Phys. Rev. Lett. 84, 4669 (2000).

    Article  CAS  Google Scholar 

  14. T.C. Harman, M.P. Walsh, B.E. LaForge, and G.W. Turner: Nanostructured thermoelectric materials. J. Electron. Mater. 34 (5), L19L22 (2005).

    Article  Google Scholar 

  15. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge: Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229 (2002).

    Article  CAS  Google Scholar 

  16. A. Baladin and K.A. Wang: Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84, 6149 (1998).

    Article  Google Scholar 

  17. M.P. Singh and C.M. Bhandari: Non-monotonic thermoelectric behavior of lead telluride in quantum-well-like structures. Solid State Commun. 133, 29 (2005).

    Article  CAS  Google Scholar 

  18. C.M. Bhandari: chapters 4–6 in CRC Handbook of Thermoelectrics edited by D.M. Rowe (CRC Press, Boca Raton, FL, 1995), p. 701.

  19. J.R. Drabble and H.J. Coldsmid: Thermal Conduction in Semiconductors (chapter 4), (London: Pergaman Press, Oxford, England, 1961), p. 105.

    Google Scholar 

  20. Y.I. Rawich, B.A. Efimova, and I.A. Smirnova: Research Methods as Applied to Semiconductor Lead Chalcogenides PbTe, PbSe, PbS (Moscow: Science, 1968), p. 241.

    Google Scholar 

  21. E.I. Rogacheva, I.M. Krivulkin, O.N. Nashchekina, A.Yu. Sipatov, V.A. Volobuev, and M.S. Dresselhaus: Percolation transition of thermoelectric properties in PbTe thin films. Appl. Phys. Lett. 78 (21), 3238 (2001).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Work performed under the scientific projects of the National Academy of Sciences (NAS) of Ukraine (State Registration No. 0110U006281) and State Fund for Fundamental Research (SFFR) State Agency for Science, Innovation and Information of Ukraine (state registration number 0110U007674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor K. Yurchyshyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freik, D.M., Yurchyshyn, I.K., Potyak, V.Y. et al. Oscillatory thickness dependences of the Seebeck coefficient in nanostructures based on compounds IV–VI. Journal of Materials Research 27, 1157–1163 (2012). https://doi.org/10.1557/jmr.2012.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.28

Navigation