Abstract
Advances in nanotechnology have prompted rapid progress and versatile imaging modalities for diagnostics and treatment of diseases. Molecular imaging is a powerful technique for quantifying physiological changes in vivo using noninvasive imaging probes. These probes are used to image specific cells and tissues within a whole organism. Currently, imaging is an essential part of clinical protocols providing morphological, structural, metabolic and functional information. Using theranostic micro- or nanoparticles, which combine both therapeutic and diagnostic capabilities in one single entity, holds a true promise to propel the biomedical field toward personalized medicine. With this approach, biological processes can be directly and simultaneously monitored with the treatment of the diseases. This mini-review highlights the recent innovative diagnostic imaging aspects of porous silicon (PSi) materials and emphasizes their potential as theranostic platforms and tools for the clinic. Multiple biomedical imaging applications of the PSi materials are also outlined.
Similar content being viewed by others
References
H.A. Santos, L.M. Bimbo, V.P. Lehto, A.J. Airaksinen, J. Salonen, and J. Hirvonen: Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr. Drug Discov. Technol. 8, 228 (2011).
M. Auffan, J. Rose, J.Y. Bottero, G.V. Lowry, J.P. Jolivet, and M.R. Wiesner: Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634 (2009).
B. Godin, E. Tasciotti, X. Liu, R.E. Serda, and M. Ferrari: Multistage nanovectors: From concept to novel imaging contrast agents and therapeutics. Acc. Chem. Res. 44, 979 (2011).
L. Fass: Imaging and cancer: A review. Mol. Oncol. 2, 115 (2008).
N.H. Cho, T.C. Cheong, J.H. Min, J.H. Wu, S.J. Lee, D. Kim, J.S. Yang, S. Kim, Y.K. Kim, and S.Y. Seong: A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 6, 675 (2011).
M. Das, D. Mishra, P. Dhak, S. Gupta, T.K. Maiti, A. Basak, and P. Pramanik: Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small 5, 2883 (2009).
O.C. Farokhzad and R. Langer: Impact of nanotechnology on drug delivery. ACS Nano 3, 16 (2009).
M. Ferrari: Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 5, 161 (2005).
S.S. Kelkar and T.M. Reineke: Theranostics: Combining imaging and therapy. Bioconjugate Chem. 22, 1879 (2011).
B. Sumer and J. Gao: Theranostic nanomedicine for cancer. Nanomedicine 3, 137 (2008).
F.A. Jaffer and R. Weissleder: Molecular imaging in the clinical arena. JAMA 293, 855 (2005).
R.F. Minchin and D.J. Martin: Minireview: Nanoparticles for molecular imaging—an overview. Endocrinology 151, 474 (2010).
R. Weissleder: Molecular imaging in cancer. Science 312, 1168 (2006).
T.F. Massoud and S.S. Gambhir: Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev. 17, 545 (2003).
A. Iagaru, R. Masamed, S. Keesara, and P. Conti: Breast MRI and 18F FDG PET/CT in the management of breast cancer. Ann. Nucl. Med. 21, 33 (2007).
A. Kjær: Molecular imaging of cancer using PET and SPECT, in New Trends in Cancer for the 21st Century, Vol. 587, edited by A. Llombart-Bosch, V. Felipo, and J.A. Lopes-Guerrero (Springer, New York, NY, 2006); p. 277.
P. Ray, A.M. Wu, and S.S. Gambhir: Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res. 63, 1160 (2003).
M. Atri: New technologies and directed agents for applications of cancer imaging. J. Clin. Oncol. 24, 3299 (2006).
S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi: A review of NIR dyes in cancer targeting and imaging. Biomaterials 32, 7127 (2011).
J.L. Campbell, J. Arora, S.F. Cowell, A. Garg, P. Eu, S.K. Bhargava, and V. Bansal: Quasicubic magnetite/silica core-shell nanoparticles as enhanced MRI contrast agents for cancer imaging. PLoS One 6, e21857 (2011).
X. Wan, D. Wang, and S. Liu: Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability. Langmuir 26, 15574 (2010).
X. Gao, Y. Cui, R.M. Levenson, L.W.K Chung, and S. Nie: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969 (2004).
X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, and S. Weiss: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538 (2005).
C.C. Huang, N.H. Khu, and C.S. Yeh: The characteristics of sub 10 nm manganese oxide T1 contrast agents of different nanostructured morphologies. Biomaterials 31, 4073 (2010).
E.C. Wu, J.S. Andrew, L. Cheng, W.R. Freeman, L. Pearson, and M.J. Sailor: Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 32, 1957 (2011).
J. Salonen, A.M. Kaukonen, J. Hirvonen, and V.P. Lehto: Mesoporous silicon in drug delivery applications. J. Pharm. Sci. 97, 632 (2008).
E.J. Anglin, L. Cheng, W.R. Freeman, and M.J. Sailor: Porous silicon in drug delivery devices and materials. Adv. Drug Delivery Rev. 60, 1266 (2008).
L.M. Bimbo, E. Makila, T. Laaksonen, V.P. Lehto, J. Salonen, J. Hirvonen, and H.A. Santos: Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32, 2625 (2011).
L.M. Bimbo, E. Makila, J. Raula, T. Laaksonen, P. Laaksonen, K. Strommer, E.I. Kauppinen, J. Salonen, M.B. Linder, J. Hirvonen, and H.A. Santos: Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials 32, 9089 (2011).
P. Kinnari, E. Makila, T. Heikkila, J. Salonen, J. Hirvonen, and H.A. Santos: Comparison of mesoporous silicon and nonordered mesoporous silica materials as drug carriers for itraconazole. Int. J. Pharm. 414, 148 (2011).
T. Laaksonen, H. Santos, H. Vihola, J. Salonen, J. Riikonen, T. Heikkila, L. Peltonen, N. Kumar, D.Y. Murzin, V.P. Lehto, and J. Hirvonen: Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem. Res. Toxicol. 20, 1913 (2007).
N. Vale, E. Mäkilä, J. Salonen, P. Gomes, J. Hirvonen, and H.A. Santos: New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. Eur. J. Pharm. Biopharm. 81, 314 (2012).
M. Tahvanainen, T. Rotko, E. Mäkilä, H.A. Santos, D. Neves, T. Laaksonen, A. Kallonen, K. Hämäläinen, M. Peura, R. Serimaa, J. Salonen, J. Hirvonen, and L. Peltonen: Tablet preformulations of indomethacin-loaded mesoporous silicon microparticles. Int. J. Pharm. 422, 125 (2012).
S.J.P McInnes and N.H. Voelcker: Silicon–polymer hybrid materials for drug delivery. Future Med. Chem. 1, 1051 (2009).
H.A. Santos, J. Salonen, L.M. Bimbo, V.P. Lehto, L. Peltonen, and J. Hirvonen: Mesoporous materials as controlled drug delivery formulations. J. Drug Delivery Sci. Technol. 21, 139 (2011).
E.C. Wu, J.H. Park, J. Park, E. Segal, F. Cunin, and M.J. Sailor: Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2, 2401 (2008).
E. Tasciotti, B. Godin, J.O. Martinez, C. Chiappini, R. Bhavane, X. Liu, and M. Ferrari: Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Mol. Imaging 10, 56 (2011).
E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M.M. Cheng, P. Decuzzi, J.M. Tour, F. Robertson, and M. Ferrari: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151 (2008).
J.H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, and M.J. Sailor: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331 (2009).
L. Cheng, E. Anglin, F. Cunin, D. Kim, M.J. Sailor, I. Falkenstein, A. Tammewar, and W.R. Freeman: Intravitreal properties of porous silicon photonic crystals: A potential self-reporting intraocular drug-delivery vehicle. Br. J. Ophthalmol. 92, 705 (2008).
M.P. Sarparanta, L.M. Bimbo, E.M. Makila, J.J. Salonen, P.H. Laaksonen, A.M. Helariutta, M.B. Linder, J.T. Hirvonen, T.J. Laaksonen, H.A. Santos, and A.J. Airaksinen: The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33, 3353 (2012).
L.M. Bimbo, M. Sarparanta, H.A. Santos, A.J. Airaksinen, E. Makila, T. Laaksonen, L. Peltonen, V.P. Lehto, J. Hirvonen, and J. Salonen: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4, 3023 (2010).
M. Sarparanta, L.M. Bimbo, J. Rytkonen, E. Makila, T.J. Laaksonen, P. Laaksonen, M. Nyman, J. Salonen, M.B. Linder, J. Hirvonen, H.A. Santos, and A.J. Airaksinen: Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol. Pharmaceutics 9, 654 (2012).
M. Sarparanta, E. Makila, T. Heikkila, J. Salonen, E. Kukk, V.P. Lehto, H.A. Santos, J. Hirvonen, and A.J. Airaksinen: 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol. Pharmaceutics 8, 1799 (2011).
S.P. Low, K.A. Williams, L.T. Canham, and N.H. Voelcker: Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 27, 4538 (2006).
H.A. Santos, J. Riikonen, J. Salonen, E. Makila, T. Heikkila, T. Laaksonen, L. Peltonen, V.P. Lehto, and J. Hirvonen: In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 6, 2721 (2010).
L.M. Bimbo, M. Sarparanta, E. Makila, T. Laaksonen, P. Laaksonen, J. Salonen, M.B. Linder, J. Hirvonen, A.J. Airaksinen, and H.A. Santos: Cellular interactions of surface-modified nanoporous silicon particles. Nanoscale 4, 3184 (2012).
S.P. Low, N.H. Voelcker, L.T. Canham, and K.A. Williams: The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30, 2873 (2009).
S.J. McInnes, Y. Irani, K.A. Williams, and N.H. Voelcker: Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). Nanomedicine 6, 6 (2012).
L.T. Canham, A.A. Kluczewska, J.P. Barley, and R.F.D.C. Varajao: Imaging agents comprising silicon. WO/2007/034196, (March 29, 2007).
O. Bisi, S. Ossicini, and L. Pavesi: Porous silicon: A quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1 (2000).
F. Cunin, T.A. Schmedake, J.R. Link, Y.Y. Li, J. Koh, S.N. Bhatia, and M.J. Sailor: Biomolecular screening with encoded porous silicon photonic crystals. Nat. Mater. 1, 39 (2002).
M-A. D’Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin: Endoscopic confocal fluorescence microscopy of normal and tumor-bearing rat bladder. J. Urol. 174, 736 (2005).
W. He, H. Wang, L.C. Hartmann, J.X. Cheng, and P.S. Low: In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl. Acad. Sci. U.S.A. 104, 11760 (2007).
R.E. Serda, B. Godin, E. Blanco, C. Chiappini, and M. Ferrari: Multistage delivery nanoparticle systems for therapeutic applications. Biochim. Biophys. Acta 1810, 317 (2011).
Y.Y. Li, F. Cunin, J.R. Link, T. Gao, R.E. Betts, S.H. Reiver, V. Chin, S.N. Bhatia, and M.J. Sailor: Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 2045 (2003).
G. Choy, P. Choyke, and S.K. Libutti: Current advances in molecular imaging: Noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol. Imaging 2, 303 (2003).
L.T. Canham: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).
D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen: Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006).
C. Hong, J. Lee, M. Son, S.S. Hong, and C. Lee: In vivo cancer cell destruction using porous silicon nanoparticles. Anticancer Drugs 22, 971 (2011).
R.D. Tilley and K. Yamamoto: The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Adv. Mater. 18, 2053 (2006).
R. Weissleder: A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316 (2001).
S. Aime, D.D. Castelli, S.G. Crich, E. Gianolio, and E. Terreno: Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc. Chem. Res. 42, 822 (2009).
T. Chen, M.I. Shukoor, R. Wang, Z. Zhao, Q. Yuan, S. Bamrungsap, X. Xiong, and W. Tan: Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5, 7866 (2011).
R. Jain, P. Dandekar, and V. Patravale: Diagnostic nanocarriers for sentinel lymph node imaging. J. Controlled Release 138, 90 (2009).
Z. Zhou, D. Li, H. Yang, Y. Zhu, and S. Yang: Synthesis of d-f coordination polymer nanoparticles and their application in phosphorescence and magnetic resonance imaging. Dalton Trans. 40, 11941 (2011).
E. Terreno, D.D. Castelli, A. Viale, and S. Aime: Challenges for molecular magnetic resonance imaging. Chem. Rev. 110, 3019 (2010).
E.J. Werner, A. Datta, C.J. Jocher, and K.N. Raymond: High-relaxivity MRI contrast agents: Where coordination chemistry meets medical imaging. Angew. Chem. Int. Ed. 47, 8568 (2008).
Y.W. Jun, J.H. Lee, and J. Cheon: Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 47, 5122 (2008).
S. Viswanathan, Z. Kovacs, K.N. Green, S.J. Ratnakar, and A.D. Sherry: Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev. 110, 2960 (2010).
M.K. Yu, Y.Y. Jeong, J. Park, S. Park, J.W. Kim, J.J. Min, K. Kim, and S. Jon: Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed. 47, 5362 (2008).
J.F. Berret, N. Schonbeck, F. Gazeau, D. El Kharrat, O. Sandre, A. Vacher, and M. Airiau: Controlled clustering of superparamagnetic nanoparticles using block copolymers: Design of new contrast agents for magnetic resonance imaging. J. Am. Chem. Soc. 128, 1755 (2006).
V. Ntziachristos, C. Bremer, and R. Weissleder: Fluorescence imaging with near-infrared light: New technological advances that enable in vivo molecular imaging. Eur. J. Radiol. 13, 195 (2003).
J.S. Ananta, B. Godin, R. Sethi, L. Moriggi, X. Liu, R.E. Serda, R. Krishnamurthy, R. Muthupillai, R.D. Bolskar, L. Helm, M. Ferrari, L.J. Wilson, and P. Decuzzi: Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat. Nanotechnol. 5, 815 (2010).
R.E. Serda, A. Mack, M. Pulikkathara, A.M. Zaske, C. Chiappini, J.R. Fakhoury, D. Webb, B. Godin, J.L. Conyers, X.W. Liu, J.A. Bankson, and M. Ferrari: Cellular association and assembly of a multistage delivery system. Small 6, 1329 (2010).
D.D. Stark, R. Weissleder, G. Elizondo, P.F. Hahn, S. Saini, L.E. Todd, J. Wittenberg, and J.T. Ferrucci: Superparamagnetic iron oxide: Clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297 (1988).
J.M. Kinsella, S. Ananda, J.S. Andrew, J.F. Grondek, M.P. Chien, M. Scadeng, N.C. Gianneschi, E. Ruoslahti, and M.J. Sailor: Enhanced magnetic resonance contrast of Fe3O4 nanoparticles trapped in a porous silicon nanoparticle host. Adv. Mater. 23, H248 (2011).
M. Hamoudeh, M.A. Kamleh, R. Diab, and H. Fessi: Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv. Drug Delivery Rev. 60, 1329 (2008).
P. Debbage and W. Jaschke: Molecular imaging with nanoparticles: Giant roles for dwarf actors. Histochem. Cell. Biol. 130, 845 (2008).
Z. Li and P.S. Conti: Radiopharmaceutical chemistry for positron emission tomography. Adv. Drug Delivery Rev. 62, 1031 (2010).
S. Vallabhajosula, L. Solnes, and B. Vallabhajosula: A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: What is new?Semin. Nucl. Med. 41, 246 (2011).
C. Tu, X. Ma, A. House, S.M. Kauzlarich, and A.Y. Louie: PET imaging and biodistribution of silicon quantum dots in mice. ACS Med. Chem. Lett. 2, 285 (2011).
M.A. Pysz, S.S. Gambhir, and J.K. Willmann: Molecular imaging: Current status and emerging strategies. Clin. Radiol. 65, 500 (2010).
M. Lecchi, L. Ottobrini, C. Martelli, A. Del Sole, and G. Lucignani: Instrumentation and probes for molecular and cellular imaging. Q. J. Nucl. Med. Mol. Imaging 51, 111 (2007).
Committee on State of the Science of Nuclear Medicine, National Research Council, in Advancing Nuclear Medicine through Innovation (National Academies Press, Washington, DC, 2007).
A.S.W Goh, A.Y.F Chung, R.H.G Lo, T.N. Lau, S.W.K Yu, M. Chng, S. Satchithanantham, S.L.E Loong, D.C.E Ng, B.C. Lim, S. Connor, and P.K.H Chow: A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device—a first-in-man study. Int. J. Radiat. Oncol. Biol. Phys. 67, 786 (2007).
www.psivida.com (accessed 10 June 2012).
Acknowledgments
H.A.S. acknowledges financial support from the Academy of Finland (Decision No. 252215 and 256394) and from the Centre for International Mobility, CIMO (decision no. TM-12-8201). L.M.B. acknowledges the Finnish Cultural Foundation for financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.
Rights and permissions
About this article
Cite this article
Santos, H.A., Bimbo, L.M., Herranz, B. et al. Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside. Journal of Materials Research 28, 152–164 (2013). https://doi.org/10.1557/jmr.2012.271
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.271