Skip to main content

Advertisement

Log in

Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Advances in nanotechnology have prompted rapid progress and versatile imaging modalities for diagnostics and treatment of diseases. Molecular imaging is a powerful technique for quantifying physiological changes in vivo using noninvasive imaging probes. These probes are used to image specific cells and tissues within a whole organism. Currently, imaging is an essential part of clinical protocols providing morphological, structural, metabolic and functional information. Using theranostic micro- or nanoparticles, which combine both therapeutic and diagnostic capabilities in one single entity, holds a true promise to propel the biomedical field toward personalized medicine. With this approach, biological processes can be directly and simultaneously monitored with the treatment of the diseases. This mini-review highlights the recent innovative diagnostic imaging aspects of porous silicon (PSi) materials and emphasizes their potential as theranostic platforms and tools for the clinic. Multiple biomedical imaging applications of the PSi materials are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Table II

Similar content being viewed by others

References

  1. H.A. Santos, L.M. Bimbo, V.P. Lehto, A.J. Airaksinen, J. Salonen, and J. Hirvonen: Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr. Drug Discov. Technol. 8, 228 (2011).

    CAS  Google Scholar 

  2. M. Auffan, J. Rose, J.Y. Bottero, G.V. Lowry, J.P. Jolivet, and M.R. Wiesner: Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634 (2009).

    CAS  Google Scholar 

  3. B. Godin, E. Tasciotti, X. Liu, R.E. Serda, and M. Ferrari: Multistage nanovectors: From concept to novel imaging contrast agents and therapeutics. Acc. Chem. Res. 44, 979 (2011).

    CAS  Google Scholar 

  4. L. Fass: Imaging and cancer: A review. Mol. Oncol. 2, 115 (2008).

    Google Scholar 

  5. N.H. Cho, T.C. Cheong, J.H. Min, J.H. Wu, S.J. Lee, D. Kim, J.S. Yang, S. Kim, Y.K. Kim, and S.Y. Seong: A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 6, 675 (2011).

    CAS  Google Scholar 

  6. M. Das, D. Mishra, P. Dhak, S. Gupta, T.K. Maiti, A. Basak, and P. Pramanik: Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small 5, 2883 (2009).

    CAS  Google Scholar 

  7. O.C. Farokhzad and R. Langer: Impact of nanotechnology on drug delivery. ACS Nano 3, 16 (2009).

    CAS  Google Scholar 

  8. M. Ferrari: Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 5, 161 (2005).

    CAS  Google Scholar 

  9. S.S. Kelkar and T.M. Reineke: Theranostics: Combining imaging and therapy. Bioconjugate Chem. 22, 1879 (2011).

    CAS  Google Scholar 

  10. B. Sumer and J. Gao: Theranostic nanomedicine for cancer. Nanomedicine 3, 137 (2008).

    Google Scholar 

  11. F.A. Jaffer and R. Weissleder: Molecular imaging in the clinical arena. JAMA 293, 855 (2005).

    CAS  Google Scholar 

  12. R.F. Minchin and D.J. Martin: Minireview: Nanoparticles for molecular imaging—an overview. Endocrinology 151, 474 (2010).

    CAS  Google Scholar 

  13. R. Weissleder: Molecular imaging in cancer. Science 312, 1168 (2006).

    CAS  Google Scholar 

  14. T.F. Massoud and S.S. Gambhir: Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev. 17, 545 (2003).

    CAS  Google Scholar 

  15. A. Iagaru, R. Masamed, S. Keesara, and P. Conti: Breast MRI and 18F FDG PET/CT in the management of breast cancer. Ann. Nucl. Med. 21, 33 (2007).

    Google Scholar 

  16. A. Kjær: Molecular imaging of cancer using PET and SPECT, in New Trends in Cancer for the 21st Century, Vol. 587, edited by A. Llombart-Bosch, V. Felipo, and J.A. Lopes-Guerrero (Springer, New York, NY, 2006); p. 277.

    Google Scholar 

  17. P. Ray, A.M. Wu, and S.S. Gambhir: Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res. 63, 1160 (2003).

    CAS  Google Scholar 

  18. M. Atri: New technologies and directed agents for applications of cancer imaging. J. Clin. Oncol. 24, 3299 (2006).

    Google Scholar 

  19. S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi: A review of NIR dyes in cancer targeting and imaging. Biomaterials 32, 7127 (2011).

    CAS  Google Scholar 

  20. J.L. Campbell, J. Arora, S.F. Cowell, A. Garg, P. Eu, S.K. Bhargava, and V. Bansal: Quasicubic magnetite/silica core-shell nanoparticles as enhanced MRI contrast agents for cancer imaging. PLoS One 6, e21857 (2011).

    CAS  Google Scholar 

  21. X. Wan, D. Wang, and S. Liu: Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability. Langmuir 26, 15574 (2010).

    CAS  Google Scholar 

  22. X. Gao, Y. Cui, R.M. Levenson, L.W.K Chung, and S. Nie: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969 (2004).

    CAS  Google Scholar 

  23. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, and S. Weiss: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538 (2005).

    CAS  Google Scholar 

  24. C.C. Huang, N.H. Khu, and C.S. Yeh: The characteristics of sub 10 nm manganese oxide T1 contrast agents of different nanostructured morphologies. Biomaterials 31, 4073 (2010).

    CAS  Google Scholar 

  25. E.C. Wu, J.S. Andrew, L. Cheng, W.R. Freeman, L. Pearson, and M.J. Sailor: Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 32, 1957 (2011).

    CAS  Google Scholar 

  26. J. Salonen, A.M. Kaukonen, J. Hirvonen, and V.P. Lehto: Mesoporous silicon in drug delivery applications. J. Pharm. Sci. 97, 632 (2008).

    CAS  Google Scholar 

  27. E.J. Anglin, L. Cheng, W.R. Freeman, and M.J. Sailor: Porous silicon in drug delivery devices and materials. Adv. Drug Delivery Rev. 60, 1266 (2008).

    CAS  Google Scholar 

  28. L.M. Bimbo, E. Makila, T. Laaksonen, V.P. Lehto, J. Salonen, J. Hirvonen, and H.A. Santos: Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32, 2625 (2011).

    CAS  Google Scholar 

  29. L.M. Bimbo, E. Makila, J. Raula, T. Laaksonen, P. Laaksonen, K. Strommer, E.I. Kauppinen, J. Salonen, M.B. Linder, J. Hirvonen, and H.A. Santos: Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials 32, 9089 (2011).

    CAS  Google Scholar 

  30. P. Kinnari, E. Makila, T. Heikkila, J. Salonen, J. Hirvonen, and H.A. Santos: Comparison of mesoporous silicon and nonordered mesoporous silica materials as drug carriers for itraconazole. Int. J. Pharm. 414, 148 (2011).

    CAS  Google Scholar 

  31. T. Laaksonen, H. Santos, H. Vihola, J. Salonen, J. Riikonen, T. Heikkila, L. Peltonen, N. Kumar, D.Y. Murzin, V.P. Lehto, and J. Hirvonen: Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem. Res. Toxicol. 20, 1913 (2007).

    CAS  Google Scholar 

  32. N. Vale, E. Mäkilä, J. Salonen, P. Gomes, J. Hirvonen, and H.A. Santos: New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. Eur. J. Pharm. Biopharm. 81, 314 (2012).

    CAS  Google Scholar 

  33. M. Tahvanainen, T. Rotko, E. Mäkilä, H.A. Santos, D. Neves, T. Laaksonen, A. Kallonen, K. Hämäläinen, M. Peura, R. Serimaa, J. Salonen, J. Hirvonen, and L. Peltonen: Tablet preformulations of indomethacin-loaded mesoporous silicon microparticles. Int. J. Pharm. 422, 125 (2012).

    CAS  Google Scholar 

  34. S.J.P McInnes and N.H. Voelcker: Silicon–polymer hybrid materials for drug delivery. Future Med. Chem. 1, 1051 (2009).

    CAS  Google Scholar 

  35. H.A. Santos, J. Salonen, L.M. Bimbo, V.P. Lehto, L. Peltonen, and J. Hirvonen: Mesoporous materials as controlled drug delivery formulations. J. Drug Delivery Sci. Technol. 21, 139 (2011).

    CAS  Google Scholar 

  36. E.C. Wu, J.H. Park, J. Park, E. Segal, F. Cunin, and M.J. Sailor: Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2, 2401 (2008).

    CAS  Google Scholar 

  37. E. Tasciotti, B. Godin, J.O. Martinez, C. Chiappini, R. Bhavane, X. Liu, and M. Ferrari: Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Mol. Imaging 10, 56 (2011).

    CAS  Google Scholar 

  38. E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M.M. Cheng, P. Decuzzi, J.M. Tour, F. Robertson, and M. Ferrari: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151 (2008).

    CAS  Google Scholar 

  39. J.H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, and M.J. Sailor: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331 (2009).

    CAS  Google Scholar 

  40. L. Cheng, E. Anglin, F. Cunin, D. Kim, M.J. Sailor, I. Falkenstein, A. Tammewar, and W.R. Freeman: Intravitreal properties of porous silicon photonic crystals: A potential self-reporting intraocular drug-delivery vehicle. Br. J. Ophthalmol. 92, 705 (2008).

    CAS  Google Scholar 

  41. M.P. Sarparanta, L.M. Bimbo, E.M. Makila, J.J. Salonen, P.H. Laaksonen, A.M. Helariutta, M.B. Linder, J.T. Hirvonen, T.J. Laaksonen, H.A. Santos, and A.J. Airaksinen: The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33, 3353 (2012).

    CAS  Google Scholar 

  42. L.M. Bimbo, M. Sarparanta, H.A. Santos, A.J. Airaksinen, E. Makila, T. Laaksonen, L. Peltonen, V.P. Lehto, J. Hirvonen, and J. Salonen: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4, 3023 (2010).

    CAS  Google Scholar 

  43. M. Sarparanta, L.M. Bimbo, J. Rytkonen, E. Makila, T.J. Laaksonen, P. Laaksonen, M. Nyman, J. Salonen, M.B. Linder, J. Hirvonen, H.A. Santos, and A.J. Airaksinen: Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol. Pharmaceutics 9, 654 (2012).

    CAS  Google Scholar 

  44. M. Sarparanta, E. Makila, T. Heikkila, J. Salonen, E. Kukk, V.P. Lehto, H.A. Santos, J. Hirvonen, and A.J. Airaksinen: 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol. Pharmaceutics 8, 1799 (2011).

    CAS  Google Scholar 

  45. S.P. Low, K.A. Williams, L.T. Canham, and N.H. Voelcker: Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 27, 4538 (2006).

    CAS  Google Scholar 

  46. H.A. Santos, J. Riikonen, J. Salonen, E. Makila, T. Heikkila, T. Laaksonen, L. Peltonen, V.P. Lehto, and J. Hirvonen: In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 6, 2721 (2010).

    CAS  Google Scholar 

  47. L.M. Bimbo, M. Sarparanta, E. Makila, T. Laaksonen, P. Laaksonen, J. Salonen, M.B. Linder, J. Hirvonen, A.J. Airaksinen, and H.A. Santos: Cellular interactions of surface-modified nanoporous silicon particles. Nanoscale 4, 3184 (2012).

    CAS  Google Scholar 

  48. S.P. Low, N.H. Voelcker, L.T. Canham, and K.A. Williams: The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30, 2873 (2009).

    CAS  Google Scholar 

  49. S.J. McInnes, Y. Irani, K.A. Williams, and N.H. Voelcker: Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). Nanomedicine 6, 6 (2012).

    Google Scholar 

  50. L.T. Canham, A.A. Kluczewska, J.P. Barley, and R.F.D.C. Varajao: Imaging agents comprising silicon. WO/2007/034196, (March 29, 2007).

    Google Scholar 

  51. O. Bisi, S. Ossicini, and L. Pavesi: Porous silicon: A quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1 (2000).

    CAS  Google Scholar 

  52. F. Cunin, T.A. Schmedake, J.R. Link, Y.Y. Li, J. Koh, S.N. Bhatia, and M.J. Sailor: Biomolecular screening with encoded porous silicon photonic crystals. Nat. Mater. 1, 39 (2002).

    CAS  Google Scholar 

  53. M-A. D’Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin: Endoscopic confocal fluorescence microscopy of normal and tumor-bearing rat bladder. J. Urol. 174, 736 (2005).

    Google Scholar 

  54. W. He, H. Wang, L.C. Hartmann, J.X. Cheng, and P.S. Low: In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl. Acad. Sci. U.S.A. 104, 11760 (2007).

    CAS  Google Scholar 

  55. R.E. Serda, B. Godin, E. Blanco, C. Chiappini, and M. Ferrari: Multistage delivery nanoparticle systems for therapeutic applications. Biochim. Biophys. Acta 1810, 317 (2011).

    CAS  Google Scholar 

  56. Y.Y. Li, F. Cunin, J.R. Link, T. Gao, R.E. Betts, S.H. Reiver, V. Chin, S.N. Bhatia, and M.J. Sailor: Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 2045 (2003).

    CAS  Google Scholar 

  57. G. Choy, P. Choyke, and S.K. Libutti: Current advances in molecular imaging: Noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol. Imaging 2, 303 (2003).

    CAS  Google Scholar 

  58. L.T. Canham: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).

    CAS  Google Scholar 

  59. D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen: Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006).

    Google Scholar 

  60. C. Hong, J. Lee, M. Son, S.S. Hong, and C. Lee: In vivo cancer cell destruction using porous silicon nanoparticles. Anticancer Drugs 22, 971 (2011).

    CAS  Google Scholar 

  61. R.D. Tilley and K. Yamamoto: The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Adv. Mater. 18, 2053 (2006).

    CAS  Google Scholar 

  62. R. Weissleder: A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316 (2001).

    CAS  Google Scholar 

  63. S. Aime, D.D. Castelli, S.G. Crich, E. Gianolio, and E. Terreno: Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc. Chem. Res. 42, 822 (2009).

    CAS  Google Scholar 

  64. T. Chen, M.I. Shukoor, R. Wang, Z. Zhao, Q. Yuan, S. Bamrungsap, X. Xiong, and W. Tan: Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5, 7866 (2011).

    CAS  Google Scholar 

  65. R. Jain, P. Dandekar, and V. Patravale: Diagnostic nanocarriers for sentinel lymph node imaging. J. Controlled Release 138, 90 (2009).

    CAS  Google Scholar 

  66. Z. Zhou, D. Li, H. Yang, Y. Zhu, and S. Yang: Synthesis of d-f coordination polymer nanoparticles and their application in phosphorescence and magnetic resonance imaging. Dalton Trans. 40, 11941 (2011).

    CAS  Google Scholar 

  67. E. Terreno, D.D. Castelli, A. Viale, and S. Aime: Challenges for molecular magnetic resonance imaging. Chem. Rev. 110, 3019 (2010).

    CAS  Google Scholar 

  68. E.J. Werner, A. Datta, C.J. Jocher, and K.N. Raymond: High-relaxivity MRI contrast agents: Where coordination chemistry meets medical imaging. Angew. Chem. Int. Ed. 47, 8568 (2008).

    CAS  Google Scholar 

  69. Y.W. Jun, J.H. Lee, and J. Cheon: Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 47, 5122 (2008).

    CAS  Google Scholar 

  70. S. Viswanathan, Z. Kovacs, K.N. Green, S.J. Ratnakar, and A.D. Sherry: Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev. 110, 2960 (2010).

    CAS  Google Scholar 

  71. M.K. Yu, Y.Y. Jeong, J. Park, S. Park, J.W. Kim, J.J. Min, K. Kim, and S. Jon: Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed. 47, 5362 (2008).

    CAS  Google Scholar 

  72. J.F. Berret, N. Schonbeck, F. Gazeau, D. El Kharrat, O. Sandre, A. Vacher, and M. Airiau: Controlled clustering of superparamagnetic nanoparticles using block copolymers: Design of new contrast agents for magnetic resonance imaging. J. Am. Chem. Soc. 128, 1755 (2006).

    CAS  Google Scholar 

  73. V. Ntziachristos, C. Bremer, and R. Weissleder: Fluorescence imaging with near-infrared light: New technological advances that enable in vivo molecular imaging. Eur. J. Radiol. 13, 195 (2003).

    Google Scholar 

  74. J.S. Ananta, B. Godin, R. Sethi, L. Moriggi, X. Liu, R.E. Serda, R. Krishnamurthy, R. Muthupillai, R.D. Bolskar, L. Helm, M. Ferrari, L.J. Wilson, and P. Decuzzi: Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat. Nanotechnol. 5, 815 (2010).

    CAS  Google Scholar 

  75. R.E. Serda, A. Mack, M. Pulikkathara, A.M. Zaske, C. Chiappini, J.R. Fakhoury, D. Webb, B. Godin, J.L. Conyers, X.W. Liu, J.A. Bankson, and M. Ferrari: Cellular association and assembly of a multistage delivery system. Small 6, 1329 (2010).

    CAS  Google Scholar 

  76. D.D. Stark, R. Weissleder, G. Elizondo, P.F. Hahn, S. Saini, L.E. Todd, J. Wittenberg, and J.T. Ferrucci: Superparamagnetic iron oxide: Clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297 (1988).

    CAS  Google Scholar 

  77. J.M. Kinsella, S. Ananda, J.S. Andrew, J.F. Grondek, M.P. Chien, M. Scadeng, N.C. Gianneschi, E. Ruoslahti, and M.J. Sailor: Enhanced magnetic resonance contrast of Fe3O4 nanoparticles trapped in a porous silicon nanoparticle host. Adv. Mater. 23, H248 (2011).

    CAS  Google Scholar 

  78. M. Hamoudeh, M.A. Kamleh, R. Diab, and H. Fessi: Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv. Drug Delivery Rev. 60, 1329 (2008).

    CAS  Google Scholar 

  79. P. Debbage and W. Jaschke: Molecular imaging with nanoparticles: Giant roles for dwarf actors. Histochem. Cell. Biol. 130, 845 (2008).

    CAS  Google Scholar 

  80. Z. Li and P.S. Conti: Radiopharmaceutical chemistry for positron emission tomography. Adv. Drug Delivery Rev. 62, 1031 (2010).

    CAS  Google Scholar 

  81. S. Vallabhajosula, L. Solnes, and B. Vallabhajosula: A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: What is new?Semin. Nucl. Med. 41, 246 (2011).

    Google Scholar 

  82. C. Tu, X. Ma, A. House, S.M. Kauzlarich, and A.Y. Louie: PET imaging and biodistribution of silicon quantum dots in mice. ACS Med. Chem. Lett. 2, 285 (2011).

    CAS  Google Scholar 

  83. M.A. Pysz, S.S. Gambhir, and J.K. Willmann: Molecular imaging: Current status and emerging strategies. Clin. Radiol. 65, 500 (2010).

    CAS  Google Scholar 

  84. M. Lecchi, L. Ottobrini, C. Martelli, A. Del Sole, and G. Lucignani: Instrumentation and probes for molecular and cellular imaging. Q. J. Nucl. Med. Mol. Imaging 51, 111 (2007).

    CAS  Google Scholar 

  85. Committee on State of the Science of Nuclear Medicine, National Research Council, in Advancing Nuclear Medicine through Innovation (National Academies Press, Washington, DC, 2007).

    Google Scholar 

  86. A.S.W Goh, A.Y.F Chung, R.H.G Lo, T.N. Lau, S.W.K Yu, M. Chng, S. Satchithanantham, S.L.E Loong, D.C.E Ng, B.C. Lim, S. Connor, and P.K.H Chow: A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device—a first-in-man study. Int. J. Radiat. Oncol. Biol. Phys. 67, 786 (2007).

    CAS  Google Scholar 

  87. www.psivida.com (accessed 10 June 2012).

Download references

Acknowledgments

H.A.S. acknowledges financial support from the Academy of Finland (Decision No. 252215 and 256394) and from the Centre for International Mobility, CIMO (decision no. TM-12-8201). L.M.B. acknowledges the Finnish Cultural Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélder A. Santos.

Additional information

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, H.A., Bimbo, L.M., Herranz, B. et al. Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside. Journal of Materials Research 28, 152–164 (2013). https://doi.org/10.1557/jmr.2012.271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.271

Navigation