Skip to main content
Log in

Microstructure and dielectric behavior of the three-phase Ag@SiO2/BaTiO3/PVDF composites with high permittivity

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ag nanoparticles were prepared via a wet chemical reduction method and treated with tetraethoxysilane (TEOS) to form an insulating SiO2 layer on the surface (Ag@SiO2). The Ag@SiO2 nanoparticles were introduced in to the BaTiO3/poly (vinylidene fluoride) matrix to prepare the three-phase Ag@SiO2/BaTiO3/poly (vinylidene fluoride) composite, and the dielectric behavior of the composite was investigated. The results showed that the typical “conductor/polymer” percolation effect was not observed in the composite as a result of the SiO2 layer, which prevented Ag particles from contacting with each other directly and restricted the movement of electrons under external field. The high dielectric constant of 723 and a relatively low loss of 0.82 were achieved at 100 Hz with 40 vol% Ag@SiO2 and 20 vol% BaTiO3, respectively. The microcapacitor network model and “Maxwell-Wagner-Sillars” (MWS) effect were used to investigate dielectric properties of the three-phase composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE I.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. C. Pecharroman, E.B. Fatima, and J.S. Moya: New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant (epsilon(r) approximate to 80,000). Adv. Mater. 13, 1541 (2001).

    Article  CAS  Google Scholar 

  2. J.J. Wu and D.S. McLachlan: Percolation exponents and thresholds obtained from the nearly ideal continuum percolation system graphite-boron nitride. Phys. Rev. B 56, 1236 (1997).

    Article  CAS  Google Scholar 

  3. J.J. Wu and D.S. McLachlan: Scaling behavior of the complex conductivity of graphite boron nitride percolation systems. Phys. Rev. B 58, 14880 (1998).

    Article  CAS  Google Scholar 

  4. C. Brosseau: Generalized effective medium theory and dielectric relaxation in particle-filled polymeric resins. J. Appl. Phys. 91, 3197 (2002).

    Article  CAS  Google Scholar 

  5. Q. Li, Q.Z. Xue, L.Z. Hao, X.L. Gao, and Q.B. Zheng: Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos. Sci. Technol. 68, 2290 (2008).

    Article  CAS  Google Scholar 

  6. Y. Shen, Y.H. Lin, and C.W. Nan: Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv. Funct. Mater. 17, 2405 (2007).

    Article  CAS  Google Scholar 

  7. J.W. Xu and C.P. Wong: Effects of the low loss polymers on the dielectric behavior of novel aluminum-filled high-K nNanocomposites. in 9th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, Las Vegas, NV, 2004, p. 496.

    Google Scholar 

  8. J.L. Gong, Y. Liang, Y. Huang, J.W. Chen, J.H. Jiang, G.L. Shen, and R.Q. Yu: Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosens. Bioelectron. 22, 1501 (2007).

    Article  CAS  Google Scholar 

  9. K. Xu, J.X. Wang, X.L. Kang, and J.F. Chen: Fabrication of antibacterial monodispersed Ag-SiO2 core-shell nanoparticles with high concentration. Mater. Lett. 63, 31 (2009).

    Article  CAS  Google Scholar 

  10. Z.M. Dang, Y. Shen, and C.W. Nan: Dielectric behavior of three-phase percolative Ni-BaTiO3/polyvinylidene fluoride composites. Appl. Phys. Lett. 81, 4814 (2002).

    Article  CAS  Google Scholar 

  11. C. Graf, D.L. Vossen, A. Imhof, and A.V. Blaaderen: A general method to coat colloidal particles with silica. Langmuir 19, 6693 (2003).

    Article  CAS  Google Scholar 

  12. G. Arlt, D. Hennings, and G. Dewith: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985).

    Article  CAS  Google Scholar 

  13. J.C. Maxwell: Electricity and Magnetism, 1st ed. (Oxford: Clarendon Press, Oxford, England, 1892) p. 452, 1.

    Google Scholar 

  14. K.W. Wagner: Study on the interfacial polarization of the dielectrics based on Maxwell-Wagner-Sillars. Archiv. Für. Elektrotechnik. 2, 87 (1914).

    Google Scholar 

  15. R.W. Sillars: The behavior of polar molecules in solid paraffin wax. Proc. R. Soc. London, Ser. A 169, 66 (1939).

    Google Scholar 

  16. C.W. Nan: Physics of inhomogeneous inorganic materials. Prog. Mater Sci. 37, 1 (1993).

    Article  CAS  Google Scholar 

  17. K. Kakimoto, J. Furuhashi, H. Ogawa, and M. Aki: Microstructure and dielectric response of (Ba, Sr)TiO3 filler-dispersed resin composites. J. Eur. Ceram. Soc. 30, 2 (2010).

    Google Scholar 

  18. V. Kochervinskii, I. Malyshkina, N. Gavrilova, S. Sulyanov, and N. Bessonova: Peculiarities of dielectric relaxation in poly (vinylidene fluoride) with different thermal history. J. Non-Cryst. Solids 353, 51 (2007).

    Article  Google Scholar 

  19. Z.M. Dang, Y.H. Lin, and C.W. Nan: Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 15, 1625 (2003).

    Article  CAS  Google Scholar 

  20. L.L. Sun, B. Li, Z.G. Zhang, and W.H. Zhong: Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process. Eur. Polym. J. 46, 2112 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Nos. 50807038 and 20971089), the research funding from National S&T Major Project with the Contract No. 2009ZX02038 and Shenzhen fundamental research project (No. JC200903160423A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhui Yu or Rong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X., Yu, S., Sun, R. et al. Microstructure and dielectric behavior of the three-phase Ag@SiO2/BaTiO3/PVDF composites with high permittivity. Journal of Materials Research 27, 991–998 (2012). https://doi.org/10.1557/jmr.2012.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.26

Navigation