Skip to main content
Log in

Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dispersions of reduced tungsten oxide and tungsten bronze nanoparticles are known to show a remarkable absorption of near-infrared (NIR) light applicable to solar control filters for automotive and architectural windows. Origin of the NIR absorption has been investigated by analyzing dielectric constants of CsxWO3 (x = 0.15, 0.25, and 0.33) and WO2.72, and using Mie scattering theory. The optical analysis and Mie scattering theory analysis indicate that a localized surface plasmon resonance and polarons of localized electrons contribute alongside to the observed NIR absorption at different wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. U. Kreibig and M. Vollmer: Optical properties of metal clusters; Springer Series, in Materials Science Vol. 25, edited by J.P. Toennies, (Springer-Verlag, New York, 1995). p. 25.

    Google Scholar 

  2. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi: Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 131, 17736 (2009).

    Article  CAS  Google Scholar 

  3. W.K. Fisher: Polyvinylbutyral blends with lanthanum hexaboride for use in laminated solar control glazing, in Proceedings of the Glass Processing Days, Tampere, June 17–20, 2005, p. 110.

    Google Scholar 

  4. H. Takeda and K. Adachi: Near infrared absorption of tungsten oxide nanoparticle dispersions. J. Am. Ceram. Soc. 90, 4059 (2007).

    CAS  Google Scholar 

  5. H. Takeda, H. Kuno, and K. Adachi: Solar control dispersions and coatings with rare-earth hexaboride nanoparticles. J. Am. Ceram. Soc. 91, 2897 (2008).

    Article  CAS  Google Scholar 

  6. K. Adachi, M. Miratsu, and T. Asahi: Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters. J. Mater. Res. 25, 510 (2010).

    Article  CAS  Google Scholar 

  7. Y. Sato, M. Terauchi, M. Mukai, T. Kaneyama, and K. Adachi: High energy-resolution electron energy-loss spectroscopy of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region. Ultramicroscopy 111, 1381 (2011).

    Article  CAS  Google Scholar 

  8. U. zum Felde, M. Haase, and H. Weller: Electrochromism of highly doped nanocrystalline SnO2:Sb. J. Phys. Chem. B 104, 9388 (2000).

    Article  CAS  Google Scholar 

  9. O.F. Shirmer, V. Wittwer, G. Baur, and G. Brandt: Dependence of WO3 electrochromic absorption on crystallinity. J. Electrochem. Soc. 124, 749 (1977).

    Article  Google Scholar 

  10. E. Salje and B. Guttler: Anderson transition and intermediate polaron formation in WO3-X transport properties and optical absorption. Philos. Mag. B 50, 607 (1984).

    Article  CAS  Google Scholar 

  11. G.A. Niklasson, J. Klasson, and E. Olsson: Polaron absorption in tungsten oxide nanoparticle aggregates. Electrochim. Acta 46, 1967 (2001).

    Article  CAS  Google Scholar 

  12. K. Bange: Colouration of tungsten oxide films: A model for optically active coatings. Sol. Energy Mater. Sol. Cells 58, 1 (1999).

    Article  CAS  Google Scholar 

  13. C.G. Granqvist: Electrochromic tungsten oxide films: Review of progress 1993-1998. Sol. Energy Mater. Sol. Cells 60, 201 (2000).

    Article  CAS  Google Scholar 

  14. A. Deneuville and P. Gerard: Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films. J. Electron. Mater. 7, 559 (1978).

    Article  CAS  Google Scholar 

  15. M. Green and A. Travlos: Sodium-tungsten bronze thin films I. Optical properties of dilute bronzes. Philos. Mag. B 51, 501 (1985).

    Article  CAS  Google Scholar 

  16. M. Miyakawa, H. Hosono, and H. Kawazoe: Formation of hydrogen tungsten bronze by proton implantation. Mater. Res. Bull. 34, 115 (1999).

    Article  CAS  Google Scholar 

  17. A. Hussain: Phase analysis of potassium, rubidium and cesium tungsten bronzes. Acta Chem. Scand. A32, 479 (1978).

    Article  CAS  Google Scholar 

  18. I.A. Antonaia, M.C. Santoro, G. Fameli, and T. Polichetti: Transport mechanism and IR structural characterization of evaporated amorphous WO3 films. Thin Solid Films 426, 281 (2003).

    Article  CAS  Google Scholar 

  19. K. Viswanathan, K. Brandt, and E. Salje: Crystal structure and charge concentration of W18O49. J. Solid State Chem. 36, 45 (1981).

    Article  CAS  Google Scholar 

  20. C.F. Boren and D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the cooperation of Takeshi Chonan in preparing the HIP specimens. They also thank Profs. Masami Terauchi and Yohei Sato of Tohoku University for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Adachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, K., Asahi, T. Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles. Journal of Materials Research 27, 965–970 (2012). https://doi.org/10.1557/jmr.2012.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.25

Keywords

Navigation