Abstract
The effect of the use of different zinc salts as zinc sources during hydrothermal growth of zinc oxide nanowires was systematically investigated. Change in the temperature, pH, and transmittance of the growth solutions prepared with three different zinc salts was monitored and used to provide a broad explanation to the effect of the salt. In addition to conventional heating process, microwave heating of the growth solutions was also performed, and differences in the ZnO nanowires synthesized through both heating methods were examined. It was found that ionization of zinc in growth solutions is influencing the formation of ZnO nanowires leading to growth with different aspect ratios, and zinc acetate dihydrate salt allows the synthesis of nanowires with the highest aspect ratio.
Similar content being viewed by others
References
M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).
C. Li, Y. Zhang, M. Mann, P. Hiralal, H.E. Unalan, W. Lei, B.P. Wang, D.P. Chu, D. Pribat, G.A.J Amaratunga, and W.I. Milne: Stable, self-ballasting field emission from zinc oxide nanowires grown on an array of vertically aligned carbon nanofibers. Appl. Phys. Lett. 96, 143114 (2010).
Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, and D.P. Yu: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144 (2003).
S. Santra, P.K. Guha, S.Z. Ali, P. Hiralal, H.E. Unalan, J.A. Covington, G.A.J Amaratunga, W.I. Milne, J.W. Gardner, and F. Udrea: ZnO nanowires grown on SOI CMOS substrate for ethanol sensing. Sens. Actuators, B 146, 559–565 (2010).
X. Wang, C.J. Summers, and Z.L. Wang: Growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423–426 (2004).
F.M. Li, G.W. Hsieh, S. Dalal, M.C. Newton, J.E. Stott, P. Hiralal, A. Nathan, P.A. Warburton, H.E. Unalan, P. Beecher, A.J. Flewitt, I. Robinson, G.A.J Amaratunga, and W.I. Milne: Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors. IEEE Trans. Electron. Dev. 55, 3001–3011 (2008).
M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005).
H.E. Unalan, D. Wei, K. Suzuki, S. Dalal, P. Hiralal, H. Matsumoto, S. Imaizumi, M. Minagawa, A. Tanioka, A.J. Flewitt, W.I. Milne, and G.A.J Amaratunga: Photo electrochemical cell using dye-sensitized zinc oxide nanowires grown on carbon fibers. Appl. Phys. Lett. 93, 133116 (2008).
H.E. Unalan, P. Hiralal, D. Kuo, B. Parekh, G.A.J Amaratunga, and M. Chhowalla: Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single-walled carbon nanotube thin films. J. Mater. Chem. 18, 5909–5912 (2008).
Z.L. Wangand and J. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).
M.P. Lu, J. Song, M.Y. Lu, M.T. Chen, Y. Gao, L.J. Chen, and Z.L. Wang: Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223–1227 (2009).
R. Könenkamp, R.C. Word, and M. Godinez: Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Lett. 5, 1223–1227 (2005).
M.C. Jeong, B.Y. Oh, M.H. Ham, and J.M. Myoung: Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 88, 202105-1 (2006).
Z.P. Wei, Y.M. Lu, D.Z. Shen, Z.Z. Zhang, B. Yao, B.H. Li, J.Y. Zhang, D.X. Zhao, X.W. Fan, and Z.K. Tang: Room temperature p-n ZnO blue-violet light-emitting diodes. Appl. Phys. Lett. 90, 042113-3 (2007).
M.T. Chen, M.P. Lu, Y.J. Wu, J. Song, C.Y. Lee, M.Y. Lu, Y.C. Chang, L.J. Chou, Z.L. Wang, and L.J. Chen: Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett. 10, 4387–4393 (2010).
J.J. Wu, H.I. Wen, C.H. Tseng, and S.C. Liu: Well-aligned ZnO nanorods via hydrogen treatment of ZnO films. Adv. Funct. Mater. 14, 806–810 (2004).
S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh, and H.J. Lee: Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294–3299 (2003).
H. Yuan and Y. Zhang: Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. J. Cryst. Growth 263, 119–124 (2004).
Z. Ye, J. Huang, W. Xu, J. Zhou, and Z. Wang: Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape. Solid State Commun. 141, 464–466 (2007).
J. Elias, R. Tena-Zaera, and C. Lévy-Clément: Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J. Electroanal. Chem. 621, 171–177 (2008).
S. Xu, N. Adiga, S. Ba, T. Dasgupta, C.F.J Wu, and Z.L. Wang: Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 3, 1803–1812 (2009).
Y.J. Lee, T.L. Sounart, J. Liu, E.D. Spoerke, B.B. McKenzie, J.W.P Hsu, and J.A. Voigt: Tunable arrays of ZnO nanorods and nanoneedles via seed layer and solution chemistry. Cryst. Growth Des. 8, 2036–2040 (2008).
L. Vayssieres: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003).
L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang: General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5, 1231–1236 (2005).
S.F. Wang, T.Y. Tseng, Y.R. Wang, C.Y. Wang, H.C. Lu, and W.L. Shih: Effects of preparation conditions on the growth of ZnO nanorod arrays using aqueous solution method. Int. J. Appl. Ceram. Technol. 5, 419–429 (2008).
W. Zhang and K. Yanagisawa: Hydrothermal synthesis of ZnO long fibers. Chem. Lett. 34, 1170–1171 (2005).
L. Li, H. Yang, J. Yu, Y. Chen, J. Ma, J. Zhang, Y. Song, and F. Gao: Controllable growth of ZnO nanowires with different aspect ratios and microstructures and their photoluminescence and photosensitive properties. J. Cryst. Growth 311, 4199–4206 (2009).
H.E. Unalan, P. Hiralal, N. Rupesinghe, S. Dalal, W.I. Milne, and G.A.J Amaratunga: Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19, 255608-5 (2008).
Y. Sun, D.J. Riley, and M.N.R Ashfold: Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. J. Phys. Chem. B 110, 15186–15192 (2006).
Y. Lee, T. Sounart, D. Scrymgeour, J. Voigt, and J. Hsu: Control of ZnO nanorod array alignment synthesized via seeded solution growth. J. Cryst. Growth 304, 80–85 (2007).
Y. Qin, R. Yang, and Z.L. Wang: Growth of horizontal ZnO nanowire arrays on any substrate growth of horizontal ZnO nanowire arrays on any substrate. J. Phys. Chem. B 112, 18734–18736 (2008).
Y.J. Kim, C.H. Lee, Y.J. Hong, G.C. Yi, S.S. Kim, and H. Cheong: Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Appl. Phys. Lett. 89, 163128-3 (2006).
M.C. Akgun, Y.E. Kalay, and H.E. Unalan: Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 27, 1445–1451 (2012).
Acknowledgments
This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Nos. 109M084 and 109M487 and the Distinguished Young Scientist Award of the Turkish Academy of Sciences (TUBA).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Akgun, M.C., Afal, A. & Unalan, H.E. Hydrothermal zinc oxide nanowire growth with different zinc salts. Journal of Materials Research 27, 2401–2407 (2012). https://doi.org/10.1557/jmr.2012.258
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.258