Skip to main content
Log in

Hydrothermal zinc oxide nanowire growth with different zinc salts

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of the use of different zinc salts as zinc sources during hydrothermal growth of zinc oxide nanowires was systematically investigated. Change in the temperature, pH, and transmittance of the growth solutions prepared with three different zinc salts was monitored and used to provide a broad explanation to the effect of the salt. In addition to conventional heating process, microwave heating of the growth solutions was also performed, and differences in the ZnO nanowires synthesized through both heating methods were examined. It was found that ionization of zinc in growth solutions is influencing the formation of ZnO nanowires leading to growth with different aspect ratios, and zinc acetate dihydrate salt allows the synthesis of nanowires with the highest aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  2. C. Li, Y. Zhang, M. Mann, P. Hiralal, H.E. Unalan, W. Lei, B.P. Wang, D.P. Chu, D. Pribat, G.A.J Amaratunga, and W.I. Milne: Stable, self-ballasting field emission from zinc oxide nanowires grown on an array of vertically aligned carbon nanofibers. Appl. Phys. Lett. 96, 143114 (2010).

    Article  Google Scholar 

  3. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, and D.P. Yu: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144 (2003).

    Article  CAS  Google Scholar 

  4. S. Santra, P.K. Guha, S.Z. Ali, P. Hiralal, H.E. Unalan, J.A. Covington, G.A.J Amaratunga, W.I. Milne, J.W. Gardner, and F. Udrea: ZnO nanowires grown on SOI CMOS substrate for ethanol sensing. Sens. Actuators, B 146, 559–565 (2010).

    Article  CAS  Google Scholar 

  5. X. Wang, C.J. Summers, and Z.L. Wang: Growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423–426 (2004).

    Article  CAS  Google Scholar 

  6. F.M. Li, G.W. Hsieh, S. Dalal, M.C. Newton, J.E. Stott, P. Hiralal, A. Nathan, P.A. Warburton, H.E. Unalan, P. Beecher, A.J. Flewitt, I. Robinson, G.A.J Amaratunga, and W.I. Milne: Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors. IEEE Trans. Electron. Dev. 55, 3001–3011 (2008).

    Article  CAS  Google Scholar 

  7. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005).

    Article  CAS  Google Scholar 

  8. H.E. Unalan, D. Wei, K. Suzuki, S. Dalal, P. Hiralal, H. Matsumoto, S. Imaizumi, M. Minagawa, A. Tanioka, A.J. Flewitt, W.I. Milne, and G.A.J Amaratunga: Photo electrochemical cell using dye-sensitized zinc oxide nanowires grown on carbon fibers. Appl. Phys. Lett. 93, 133116 (2008).

    Article  Google Scholar 

  9. H.E. Unalan, P. Hiralal, D. Kuo, B. Parekh, G.A.J Amaratunga, and M. Chhowalla: Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single-walled carbon nanotube thin films. J. Mater. Chem. 18, 5909–5912 (2008).

    Article  CAS  Google Scholar 

  10. Z.L. Wangand and J. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    Article  Google Scholar 

  11. M.P. Lu, J. Song, M.Y. Lu, M.T. Chen, Y. Gao, L.J. Chen, and Z.L. Wang: Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223–1227 (2009).

    Article  CAS  Google Scholar 

  12. R. Könenkamp, R.C. Word, and M. Godinez: Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Lett. 5, 1223–1227 (2005).

    Article  Google Scholar 

  13. M.C. Jeong, B.Y. Oh, M.H. Ham, and J.M. Myoung: Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 88, 202105-1 (2006).

    Article  Google Scholar 

  14. Z.P. Wei, Y.M. Lu, D.Z. Shen, Z.Z. Zhang, B. Yao, B.H. Li, J.Y. Zhang, D.X. Zhao, X.W. Fan, and Z.K. Tang: Room temperature p-n ZnO blue-violet light-emitting diodes. Appl. Phys. Lett. 90, 042113-3 (2007).

    Article  Google Scholar 

  15. M.T. Chen, M.P. Lu, Y.J. Wu, J. Song, C.Y. Lee, M.Y. Lu, Y.C. Chang, L.J. Chou, Z.L. Wang, and L.J. Chen: Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett. 10, 4387–4393 (2010).

    Article  CAS  Google Scholar 

  16. J.J. Wu, H.I. Wen, C.H. Tseng, and S.C. Liu: Well-aligned ZnO nanorods via hydrogen treatment of ZnO films. Adv. Funct. Mater. 14, 806–810 (2004).

    Article  CAS  Google Scholar 

  17. S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh, and H.J. Lee: Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294–3299 (2003).

    Article  CAS  Google Scholar 

  18. H. Yuan and Y. Zhang: Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. J. Cryst. Growth 263, 119–124 (2004).

    Article  CAS  Google Scholar 

  19. Z. Ye, J. Huang, W. Xu, J. Zhou, and Z. Wang: Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape. Solid State Commun. 141, 464–466 (2007).

    Article  CAS  Google Scholar 

  20. J. Elias, R. Tena-Zaera, and C. Lévy-Clément: Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J. Electroanal. Chem. 621, 171–177 (2008).

    Article  CAS  Google Scholar 

  21. S. Xu, N. Adiga, S. Ba, T. Dasgupta, C.F.J Wu, and Z.L. Wang: Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 3, 1803–1812 (2009).

    Article  CAS  Google Scholar 

  22. Y.J. Lee, T.L. Sounart, J. Liu, E.D. Spoerke, B.B. McKenzie, J.W.P Hsu, and J.A. Voigt: Tunable arrays of ZnO nanorods and nanoneedles via seed layer and solution chemistry. Cryst. Growth Des. 8, 2036–2040 (2008).

    Article  CAS  Google Scholar 

  23. L. Vayssieres: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003).

    Article  CAS  Google Scholar 

  24. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang: General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5, 1231–1236 (2005).

    Article  CAS  Google Scholar 

  25. S.F. Wang, T.Y. Tseng, Y.R. Wang, C.Y. Wang, H.C. Lu, and W.L. Shih: Effects of preparation conditions on the growth of ZnO nanorod arrays using aqueous solution method. Int. J. Appl. Ceram. Technol. 5, 419–429 (2008).

    Article  CAS  Google Scholar 

  26. W. Zhang and K. Yanagisawa: Hydrothermal synthesis of ZnO long fibers. Chem. Lett. 34, 1170–1171 (2005).

    Article  CAS  Google Scholar 

  27. L. Li, H. Yang, J. Yu, Y. Chen, J. Ma, J. Zhang, Y. Song, and F. Gao: Controllable growth of ZnO nanowires with different aspect ratios and microstructures and their photoluminescence and photosensitive properties. J. Cryst. Growth 311, 4199–4206 (2009).

    Article  CAS  Google Scholar 

  28. H.E. Unalan, P. Hiralal, N. Rupesinghe, S. Dalal, W.I. Milne, and G.A.J Amaratunga: Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19, 255608-5 (2008).

    Article  Google Scholar 

  29. Y. Sun, D.J. Riley, and M.N.R Ashfold: Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. J. Phys. Chem. B 110, 15186–15192 (2006).

    Article  CAS  Google Scholar 

  30. Y. Lee, T. Sounart, D. Scrymgeour, J. Voigt, and J. Hsu: Control of ZnO nanorod array alignment synthesized via seeded solution growth. J. Cryst. Growth 304, 80–85 (2007).

    Article  CAS  Google Scholar 

  31. Y. Qin, R. Yang, and Z.L. Wang: Growth of horizontal ZnO nanowire arrays on any substrate growth of horizontal ZnO nanowire arrays on any substrate. J. Phys. Chem. B 112, 18734–18736 (2008).

    CAS  Google Scholar 

  32. Y.J. Kim, C.H. Lee, Y.J. Hong, G.C. Yi, S.S. Kim, and H. Cheong: Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Appl. Phys. Lett. 89, 163128-3 (2006).

    Article  Google Scholar 

  33. M.C. Akgun, Y.E. Kalay, and H.E. Unalan: Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 27, 1445–1451 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Nos. 109M084 and 109M487 and the Distinguished Young Scientist Award of the Turkish Academy of Sciences (TUBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husnu Emrah Unalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akgun, M.C., Afal, A. & Unalan, H.E. Hydrothermal zinc oxide nanowire growth with different zinc salts. Journal of Materials Research 27, 2401–2407 (2012). https://doi.org/10.1557/jmr.2012.258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.258

Navigation