Abstract
Calcium vanadate nanorods with Ca10V6O25 phase have been synthesized by a hydrothermal process without any surfactants. Hydrothermal temperature, reaction time and calcium (Ca) raw materials play important roles in the formation and size of the calcium vanadate nanorods. The nucleation and crystal growth combined with crystal splitting process have been proposed to explain the formation and growth of calcium vanadate nanorods. The calcium vanadate nanorods are used as glassy carbon electrode-modified materials to analyze the electrochemical behaviors of tartaric acid. The calcium vanadate nanorod-modified glassy carbon electrode exhibits good performance for the electrochemical detection of tartaric acid with a detection limit of 2.4 μM and linear range of 0.005–2 mM. The analytical performance and straightforward fabrication method make the calcium vanadate nanorods promising for the development of electrochemical sensors for tartaric acid.
Similar content being viewed by others
References
A.G.S Filho, O.P. Ferreira, E.J.G Santos, J.M. Fiho, and O.L. Alves: Raman spectra in vanadate nanotubes revisited. Nano Lett. 4, 2099 (2004).
Y. Liu, and Y.T. Qian: Controlled synthesis of β-Mn2V2O7 microtubes and hollow microspheres. Front. Chem. Chin. 3, 467 (2008).
R.D. Holtz, A.G.S Filho, M. Brocchi, D. Martins, N. Durán, and O.L. Alves: Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21, 185102 (2010).
J.Q. Yu and A. Kudo: Hydrothermal synthesis of nanofibrous bismuth vanadate. Chem. Lett. 34, 850 (2005).
S. Singh, N. Kumari, K.B.R Varma, and S.B. Krupanidhi: Synthesis, structural characterization and formation mechanism of ferroelectric bismuth vanadate nanotubes. J. Nanosci. Nanotechnol. 9, 6549 (2009).
D.P. Singh, K. Polychronopoulou, C. Rebholz, and S.M. Aouadi: Room temperature synthesis and high-temperature frictional study of silver vanadate nanorods. Nanotechnology 21, 325601 (2010).
H.Y. Xu, H. Wang, Z.Q. Song, Y.W. Wang, H. Yan, and M. Yoshimura: Novel chemical method for the synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochim. Acta 49, 349 (2004).
Q. Zhou, M.W. Shao, R.H. Que, L. Cheng, S.J. Zhuo, Y.H. Tong, and S.T. Lee: Silver vanadate nanoribbons: A label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering. Appl. Phys. Lett. 98, 139110 (2011).
S. Jouanneau, A. Verbaere, and D. Guyomard: On a new calcium vanadate: Synthesis, structure and Li insertion behavior. J. Solid State Chem. 172, 116 (2003).
N. Tashtoush, A.M. Qudah, and M.M. El-Desoky: Compositional dependence of the electrical conductivity of calcium vanadate glassy semiconductors. J. Phys. Chem. Solids 68, 1926 (2007).
T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe: Photoluminescence property of vanadates M2V2O7 (M: Ba, Sr and Ca). Opt. Mater. 32, 1618 (2010).
L.Z. Pei, Y.Q. Pei, Y.K. Xie, C.Z. Yuan, D.K. Li, and Q.F. Zhang: Growth of calcium vanadate nanorods. CrystEngComm 14, 4262 (2012).
E. Baudrin, S. Laruelle, S. Denis, M. Touboul, and J.M. Tarascon: Synthesis and electrochemical properties of cobalt vanadates versus lithium. Solid State Ionics 123, 139 (1999).
S.S. Kim, H. Ikuta, and M. Wakihara: Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery. Solid State Ionics 139, 57 (2001).
D. Hara, H. Ikuta, Y. Uchimoto, and M. Wakihara: Electrochemical properties of manganese vanadium molybdenum oxide as the anode for Li secondary batteries. J. Mater. Chem. 12, 2507 (2002).
M. Inagaki, T. Morishita, M. Hirano, V. Gupta, and T. Nakajima: Synthesis of MnV2O6 under autogenous hydrothermal conditions and its anodic performance. Solid State Ionics 156, 275 (2003).
F.F. Zhang, X.L. Wang, S.Y. Ai, Z.D. Sun, Q. Wan, Z.Q. Zhu, Y.Z. Xian, L.T. Jin, and K. Yamamoto: Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 519, 155 (2004).
P.K. Sudeep, S.T.S Joseph, and K.G. Thomas: Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 127, 6516 (2005).
M. Wei, Y. Liu, Z.Z. Gu, and Z.D. Liu: Electrochemical detection of catechol on boron-doped diamond electrode modified with Au/TiO2 nanorod composite. J. Chin. Chem. Soc. 58, 516 (2011).
R.K. Kvaratskhelia, and E.R. Kvaratskhelia: Electrochemical behavior of tartaric acid at solid electrodes in aqueous and mixed solutions. Russ. J. Electrochem. 44, 230 (2008).
A. Galkwad, M. Silva, and D.P. Bendito: Sensitive determination of periodate and tartaric acid by stopped-flow chemiluminescence spectrometry. Analyst 119, 1819 (1994).
Q.T. Khue, X.H. Vu, D.V. Dang, and D.C. Nguyen: The influence of hydrothermal temperature on SnO2 nanorod formation. Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 025210 (2010).
T. Ma, M. Guo, M. Zhang, Y.J. Zhang, and X.D. Wang: Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 18, 035605 (2007).
A. Katsman, Y. Yaish, E. Rabkin, and M. Beregovsky: Surface diffusion-controlled formation of nickel silicides in silicon nanowires. J. Electron. Mater. 29, 365 (2010).
V.G. Dubrovskii, N.V. Sibirev, R.A. Suris, G.E. Cirlin, J.C. Harmand, and V.M. Ustinov: Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition. Surf. Sci. 601, 4395 (2007).
J. Tang and A.P. Alivisatos: Crystal splitting in the growth of Bi2S3. Nano Lett. 6, 2701 (2006).
Y.P. Dong, L.Z. Pei, X.F. Chu, and Q.F. Zhang: Electrochemical behavior of cysteine at a CuGeO3 nanowires-modified glassy carbon electrode. Electrochim. Acta 7, 5135 (2010).
H.J. Yan, D. Wang, M.J. Han, L.J. Wan, and C.L. Bai: Adsorption and coordination of tartaric acid enantiomers on Cu(111) in aqueous solution. Langmuir 20, 7360 (2004).
Y.Z. Fu, R. Yuan, D.P. Tang, Y.Q. Chai, and L. Xu: Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques. Colloids Surf., B 40, 61 (2005).
Z.Y. Cai, L.Z. Pei, Y. Yang, Y.Q. Pei, C.G. Fan, and D.G. Fu: Electrochemical behavior of tartaric acid at CuGeO3 nanowire modified glassy carbon electrode. J. Solid State Electrochem. 16, 2243 (2012).
J. Zhang, P.H. Deng, Y.L. Feng, Y.F. Kuang, and J.J. Yang: Electrochemical determination of ascorbic acid at γ-MnO2 modified carbon black microelectrodes. Microchim. Acta 147, 279 (2004).
C. Xia and W. Ning: A novel bioelectrochemical ascorbic acid sensor modified with Cu4(OH)6SO4 nanorods. Analyst 136, 288 (2011).
Y. Li and S.H. Zhang: Electrochemical behaviors of ascorbic acid and uric acid in ionic liquid. J. Dispersion Sci. Technol. 29, 1421 (2008).
C.G. Fu, L.N. Song, and Y.Z. Fang: Simultaneous determination of sugars and organic acids by coelectroosmotic capillary electrophoresis with amperometric detection at a disk-shaped copper electrode. Anal. Chim. Acta 371, 81 (1998).
Acknowledgments
This work was supported by the Natural Science Foundation of Anhui Province (1208085QE98).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pei, L., Pei, Y., Xie, Y. et al. Formation process of calcium vanadate nanorods and their electrochemical sensing properties. Journal of Materials Research 27, 2391–2400 (2012). https://doi.org/10.1557/jmr.2012.254
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.254