Abstract
Multiwalled carbon nanotubes (MWCNTs) obtained using ethylene as a carbon source and nanocrystalline iron as a catalyst were used as the initial material. The functionalization of MWCNTs was carried out using chlorine in the liquid and gas phase. In the second case, the reaction was conducted in the temperature range from 50 to 450 °C for 2 h. The presence of chlorine species on the surface of chlorinated samples was confirmed by x-ray photoelectron spectroscopy (XPS). A quantitative analysis of metal impurity content was validated by means of thermogravimetric analysis. Better results of metal removal were achieved when the chlorination process was conducted in the gas phase and the ratio of metal in samples amounted from 2.3% to 5.1%.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
N.S. Lee, D.S. Chung, I.T. Han, J.H. Kang, Y.S. Choi, H.Y. Kim, S.H. Park, Y.W. Jin, W.K. Yi, M.J. Yun, J.E. Jung, C.J. Lee, J.H. You, S.H. Jo, C.G. Lee, and J.M. Kim: Application of carbon nanotubes to field emission displays. Diamond Relat. Mater. 10, 265 (2001).
C.V. Nguyen, K.J. Chao, R.M.D Stevens, L. Delzeit, A. Cassell, J. Han, and M. Meyyappan: Carbon nanotube tip probes: Stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors. Nanotechnology 12, 363 (2001).
S. Alwarappan, G. Liu, and C.Z. Li: Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors. Nanomedicine 6, 52 (2010).
S. Alwarappan, S. Prabhulkar, A. Durygin, and C.Z. Li: The effect of electrochemical pretreatment on the sensing performance of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 9, 2991 (2009).
A.G. Osorio, I.C.L Silveira, V.L. Bueno, and C.P. Bergmann: H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl. Surf. Sci. 255, 2485 (2008).
S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, and A. Tagliaferro: Purification of carbon nanotubes grown by thermal CVD. Physica E 37, 58 (2007).
L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, and J. Judek: Multiwalled carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloys Compd. 501, 77 (2010).
Y. Wang, Z. Iqbal, and S. Mitra: Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 43, 1015 (2005).
R. Barthos, D. Méhn, A. Demortier, N. Pierard, Y. Morciaux, G. Demortier, A. Fonseca, and J.B. Nagy: Functionalization of single-walled carbon nanotubes by using alkyl-halides. Carbon 43, 321 (2005).
S. Yin, P.K. Shen, S. Song, and S.P. Jiang: Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2 treatment for electrocatalyst support of fuel cells. Electrochim. Acta 54, 6954 (2009).
E.T. Michelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smalley, R.H. Hauge, and J.L. Margrave: Solvation of fluorinated single-walled carbon nanotubes in alcohol solvents. J. Phys. Chem. B 103, 4318 (1999).
Y.S. Lee, T.H. Cho, B.K. Lee, J.S. Rho, K.H. An, and Y.H. Lee: Surface properties of fluorinated single-walled carbon nanotubes. J. Fluorine Chem. 120, 99 (2003).
A. Hamwi, H. Alvergnat, S. Bonnamy, and F. Béguin: Fluorination of carbon nanotubes. Carbon 35, 723 (1997).
Z. Kónya, I. Vesselenyi, K. Niesz, A. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, J.B. Nagy, A.A. Koós, Z. Osváth, A. Kocsonya, L.P. Biró, and I. Kiricsi: Large scale production of short functionalized carbon nanotubes. Chem. Phys. Lett. 360, 429 (2002).
J.M. Yuan, X.H. Chen, X.H. Chen, Z.F. Fan, X.G. Yang, and Z.H. Chen: An easy method for purifying multiwalled carbon nanotubes by chlorine oxidation. Carbon 46, 1266 (2008).
W.H. Lee, S.J. Kim, W.J. Lee, J.G. Lee, R.C. Haddon, and P.J. Reucroft: X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material. Appl. Surf. Sci. 181, 121 (2001).
Y. Wang, Z. Iqbal, and S.V. Malhotra: Functionalization of carbon nanotubes with amines and enzymes. Chem. Phys. Lett. 402, 96 (2005).
U. Dettlaff-Weglikowska, J.M. Benoit, P.W. Chiu, R. Graupner, S. Lebedkin, and S. Roth: Chemical functionalization of single-walled carbon nanotubes. Curr. Appl. Phys. 2, 497 (2002).
H. Yu, Z. Zhang, Z. Wang, Z. Jiang, J. Liu, L. Wang, D. Wan, and T. Tang: Double functions of chlorinated carbon nanotubes in its combination with Ni2O3 for reducing flammability of polypropylene. J. Phys. Chem. C 114, 13226 (2010).
I. Pełech: The influence of hydrogen treatment on removal degree of iron particles from CNTs. Fullerenes Nanotubes Carbon Nanostruct. (2012, in press).
L.S.K Pang, J.D. Saxby, and S.P. Chatfield: Thermogravimetric analysis of carbon nanotubes and nanoparticles. J. Phys. Chem. 97, 6941 (1993).
M.A. Ermakova, D.Yu. Ermakov, A.L. Chuvilin, and G.G. Kuvshinov: Decomposition of methane over iron catalysts at the range of moderate temperatures: The influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201, 183 (2001).
I. Pełech and U. Narkiewicz: Comparison studies between hydrogenation and oxidation of MWNTs followed by acid treatment. J. Nanosci. Nanotechnol. 11, 7926 (2011).
A.C. Dillon, T. Gennett, K.M. Jones, J.L. Alleman, P.A. Parilla, and M.J. Heben: A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 11, 1354 (1999).
E. Papirer, R. Lacroix, J.B. Donnet, G. Nansé, and P. Fioux: XPS study of the halogenation of carbon black - Part 2. chlorination. Carbon 33, 63 (1995).
A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, and C. Moreno-Castilla: On the nature of the surface acid sites of chlorinated activated carbons. Carbon 41, 473 (2003).
M. Vasquez, G.J. Cruz, M.G. Olayo, T. Timoshina, J. Morales, and R. Olayo: Chlorine dopants in plasma-synthesized heteroaromatic polymers. Polymer 47, 7864 (2006).
J.F. Moulder, W.E. Stickle, P.E. Sobol, and K.E. Bomben: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992).
H. Piao, K. Adib, and M.A. Barteau: A temperature-programmed x-ray photoelectron spectroscopy (TPXPS) study of chlorine adsorption and diffusion on Ag(1 1 1). Surf. Sci. 557, 13 (2004).
U. Narkiewicz, I. Pełech, Z. Rosłaniec, M. Kwiatkowska, and W. Arabczyk: Preparation of nanocrystalline iron–carbon materials as fillers for polymers. Nanotechnology 18, 405601 (2007).
Acknowledgments
The authors are grateful to Dr. E. Borowiak—Palén (West Pomeranian University of Technology, Institute of Chemical and Environment Engineering) for the studies using High Resolution Transmission Electron Microscopy. This research was carried out under the funding of Polish Ministry of Science and Higher Education (NN 205 112 135).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pełech, I., Narkiewicz, U., Moszyński, D. et al. Simultaneous purification and functionalization of carbon nanotubes using chlorination. Journal of Materials Research 27, 2368–2374 (2012). https://doi.org/10.1557/jmr.2012.243
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.243