Abstract
The oxidation behavior of Cu50Zr50 and Cu46Zr46Al8 glasses during continuous heating up to 1073 K has been investigated, with special emphasis on the oxidation resistance in the supercooled liquid (SCL) state. For Cu50Zr50, the oxide layer mostly consists of monoclinic ZrO2 (m-ZrO2), while for Cu46Zr46Al8, the oxide layer consists of two different layers: an outer layer consisting of tetragonal ZrO2 (t-ZrO2) + Al2O3 + metallic Cu (oxidation product from the SCL state of the glass matrix) and inner layer comprised of m-ZrO2 + metallic Cu islands (oxidation product from the crystallized matrix). Cu-enriched regions consisting of Cu51Zr14 (in Cu50Zr50) or AlCu2Zr + Cu70Zr15Al15 + Cu51Zr14 (in Cu46Zr46Al8) are present below the oxide layer. The present study shows that the addition of Al (8 at.%) in Cu50Zr50 results in a significant deterioration of the oxidation resistance in the SCL state since the solutionizing of Al in t-ZrO2 leads to a higher oxygen ion vacancy concentration, thus providing a higher activity of oxygen ions.
This is a preview of subscription content, access via your institution.











References
A.I. Salimon, M.F. Ashby, Y. Brechet, and A.L. Greer: Bulk metallic glasses: What are they good for? Mater. Sci. Eng., A 375, 385 (2004).
M.F. Ashby and A.L. Greer: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).
D.C. Hofmann: Shape memory bulk metallic glass composites. Science 329, 1294 (2010).
S. Pauly, S. Gorantla, G. Wang, U. Kuhn, and J. Eckert: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).
G. Kumar, H.X. Tang, and J. Schroers: Nanomoulding with amorphous metals. Nature 457, 868 (2009).
J. Schroers: Processing of bulk metallic glass. Adv. Mater. 22, 1566 (2010).
Y. Saotome, K. Imai, S. Shioda, S. Shimizu, T. Zhang, and A. Inoue: The micro-nanoformability of Pt-based metallic glass and the nanoforming of three-dimensional structures. Intermetallics 10, 1241 (2002).
J. Schroers, Q. Pham, A. Peker, N. Paton, and R.V. Curtis: Blow molding of bulk metallic glass. Scr. Mater. 57, 341 (2007).
J. Schroers: The superplastic forming of bulk metallic glasses. JOM 57, 35 (2005).
T. Fukushige, S. Hata, and A. Shimokohbe: A MEMS conical spring actuator array. J. Microelectromech. Syst. 14 (2), 243 (2005).
J. Schroers, T. Nguyen, and A. Desai: Superplastic Forming of Bulk Metallic Glass—A Technology for MEMS and Microstructure Fabrication (IEEE-MEMS 2006, Istanbul, Turkey, 2006), p. 298.
M. Carmo, R.C. Sekol, S.Y. Ding, G. Kumar, J. Schroers, and A.D. Taylor: Bulk metallic glass nanowire architecture for electrochemical applications. ACS Nano 5 (4), 2979 (2011).
S.Y. Kim, S.S. Jee, K.R. Lim, W.T. Kim, D.H. Kim, E.S. Lee, Y.H. Kim, S.M. Lee, J.H. Lee, and J. Eckert: Replacement of oxide glass with metallic glass for Ag screen printing metallization on Si emitter. Appl. Phys. Lett. 98, 222112 (2011).
H.M. Kimura, K. Asami, A. Inoue, and T. Masumoto: The oxidation of amorphous Zr-based binary alloys in air. Corros. Sci. 35, 909 (1993).
C.Y. Tam and C.H. Shek: Oxidation behavior of Cu60Zr30Ti10 bulk metallic glass. J. Mater. Res. 20 (6), 1396 (2005).
U. Koster, L. Jastrow, and M. Meuris: Oxidation of Cu60Zr30Ti10 metallic glasses. Mater. Sci. Eng.,A 449, 165 (2007).
C.Y. Tam and C.H. Shek: Oxidation-induced copper segregation in Cu60Zr30Ti10 bulk metallic glass. J. Mater. Res. 21 (4), 851 (2006).
W. Kai, P.C. Kao, P.C. Lin, I.F. Ren, and J.S.C. Jang: Effects of Si addition on the oxidation behavior of a Cu–Zr-based bulk metallic alloy. Intermetallics 18, 1994 (2010).
C.Y. Tam and C.H. Shek: Effects of alloying on oxidation of Cu-based bulk metallic glasses. J. Mater. Res. 20 (10), 2647 (2005).
C.Y. Tam, C.H. Shek, and W.H. Wang: Oxidation behaviour of a Cu-Zr-Al bulk metallic glass. Rev. Adv. Mater. Sci. 18, 107 (2008).
W. Kai, T.H. Ho, H.H. Hsieh, Y.R. Chen, D.C. Qiao, F. Jiang, G. Fan, and P.K. Liaw: Oxidation behavior of CuZr-based glassy alloys at 400 °C to 500 °C in dry air. Metall. Mater. Trans. A 39A, 1838 (2008).
L. Liu and K.C. Chan: Oxidation of Zr55Cu30Al10Ni5 bulk metallic glass in the glassy state and the supercooled liquid state. Appl. Phys. A 80, 1737 (2005).
X. Sun, S. Schneider, U. Geyer, W.L. Johnson, and M.A. Nicolet: Oxidation and crystallization of an amorphous Zr60Al15Ni25 alloy. J. Mater. Res. 11 (11), 2738 (1996).
Q. Zhang, W. Zhang, G. Xie, and A. Inoue: Glass-forming ability and mechanical properties of the ternary Cu–Zr–Al and quaternary Cu–Zr–Al–Ag bulk metallic glasses. Mater. Trans. 48 (7), 1626 (2007).
S. Pauly, J. Das, N. Mattern, D.H. Kim, and J. Eckert: Phase formation and thermal stability in Cu–Zr–Ti(Al) metallic glasses. Intermetallics 17, 453 (2009).
Y.F. Sun, B.C. Wei, Y.R. Wang, W.H. Li, T.L. Cheung, and C.H. Shek: Plasticity-improved Zr–Cu–Al bulk metallic glass matrix composites containing martensite phase. Appl. Phys. Lett. 87, 051905 (2005).
S.M. Ho: On the structural chemistry of zirconium oxide. Mater. Sci. Eng. 54, 23 (1982).
X. Lu, K. Liang, S. Gu, Y. Zheng, and H. Fang: Effect of oxygen vacancies on transformation of zirconia at low temperatures. J. Mater. Sci. 32, 6653 (1997).
S. Shukla and S. Seal: Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int. Mater. Rev. 50 (1), 1 (2005).
M.V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer: Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219 (2007).
M.S. Khan, M.S. Islam, and D.R. Bates: Cation doping and oxygen diffusion in zirconia: A combined atomistic simulation and molecular dynamics study. J. Mater. Chem. 8 (10), 2299 (1998).
C. Arhammar, C.M. Araujo, and R. Ahuja: Energetics of Al doping and intrinsic defects in monoclinic and cubic zirconia: First-principles calculations. Phys. Rev. B 80, 115208 (2009).
E.M. Levin, C.R. Robbins, and H.F. McMurdie: Phase diagrams for ceramists, 1969 Supplement (American Ceramic Society, Columbus, Ohio, 1969).
ACKNOWLEDGMENTS
This work was supported by the Samsung Advanced Institute of Technology and the Global Research Laboratory Program of the Korean Ministry of Education, Science, and Technology. K.R. Lim acknowledges the support from the Second Stage of Brain Korea 21 Project. Stimulating discussions with K.B. Kim, N. Mattern, S. Oswald, and E.S. Park are gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lim, K.R., Kim, W.T., Lee, ES. et al. Oxidation resistance of the supercooled liquid in Cu50Zr50 and Cu46Zr46Al8 metallic glasses. Journal of Materials Research 27, 1178–1186 (2012). https://doi.org/10.1557/jmr.2012.23
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.23