Skip to main content

Oxidation resistance of the supercooled liquid in Cu50Zr50 and Cu46Zr46Al8 metallic glasses

Abstract

The oxidation behavior of Cu50Zr50 and Cu46Zr46Al8 glasses during continuous heating up to 1073 K has been investigated, with special emphasis on the oxidation resistance in the supercooled liquid (SCL) state. For Cu50Zr50, the oxide layer mostly consists of monoclinic ZrO2 (m-ZrO2), while for Cu46Zr46Al8, the oxide layer consists of two different layers: an outer layer consisting of tetragonal ZrO2 (t-ZrO2) + Al2O3 + metallic Cu (oxidation product from the SCL state of the glass matrix) and inner layer comprised of m-ZrO2 + metallic Cu islands (oxidation product from the crystallized matrix). Cu-enriched regions consisting of Cu51Zr14 (in Cu50Zr50) or AlCu2Zr + Cu70Zr15Al15 + Cu51Zr14 (in Cu46Zr46Al8) are present below the oxide layer. The present study shows that the addition of Al (8 at.%) in Cu50Zr50 results in a significant deterioration of the oxidation resistance in the SCL state since the solutionizing of Al in t-ZrO2 leads to a higher oxygen ion vacancy concentration, thus providing a higher activity of oxygen ions.

This is a preview of subscription content, access via your institution.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE II.
FIG. 8
FIG. 9

References

  1. A.I. Salimon, M.F. Ashby, Y. Brechet, and A.L. Greer: Bulk metallic glasses: What are they good for? Mater. Sci. Eng., A 375, 385 (2004).

    Article  Google Scholar 

  2. M.F. Ashby and A.L. Greer: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).

    Article  CAS  Google Scholar 

  3. D.C. Hofmann: Shape memory bulk metallic glass composites. Science 329, 1294 (2010).

    Article  CAS  Google Scholar 

  4. S. Pauly, S. Gorantla, G. Wang, U. Kuhn, and J. Eckert: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).

    Article  CAS  Google Scholar 

  5. G. Kumar, H.X. Tang, and J. Schroers: Nanomoulding with amorphous metals. Nature 457, 868 (2009).

    Article  CAS  Google Scholar 

  6. J. Schroers: Processing of bulk metallic glass. Adv. Mater. 22, 1566 (2010).

    Article  CAS  Google Scholar 

  7. Y. Saotome, K. Imai, S. Shioda, S. Shimizu, T. Zhang, and A. Inoue: The micro-nanoformability of Pt-based metallic glass and the nanoforming of three-dimensional structures. Intermetallics 10, 1241 (2002).

    Article  CAS  Google Scholar 

  8. J. Schroers, Q. Pham, A. Peker, N. Paton, and R.V. Curtis: Blow molding of bulk metallic glass. Scr. Mater. 57, 341 (2007).

    Article  CAS  Google Scholar 

  9. J. Schroers: The superplastic forming of bulk metallic glasses. JOM 57, 35 (2005).

    Article  CAS  Google Scholar 

  10. T. Fukushige, S. Hata, and A. Shimokohbe: A MEMS conical spring actuator array. J. Microelectromech. Syst. 14 (2), 243 (2005).

    Article  Google Scholar 

  11. J. Schroers, T. Nguyen, and A. Desai: Superplastic Forming of Bulk Metallic Glass—A Technology for MEMS and Microstructure Fabrication (IEEE-MEMS 2006, Istanbul, Turkey, 2006), p. 298.

    Google Scholar 

  12. M. Carmo, R.C. Sekol, S.Y. Ding, G. Kumar, J. Schroers, and A.D. Taylor: Bulk metallic glass nanowire architecture for electrochemical applications. ACS Nano 5 (4), 2979 (2011).

    Article  CAS  Google Scholar 

  13. S.Y. Kim, S.S. Jee, K.R. Lim, W.T. Kim, D.H. Kim, E.S. Lee, Y.H. Kim, S.M. Lee, J.H. Lee, and J. Eckert: Replacement of oxide glass with metallic glass for Ag screen printing metallization on Si emitter. Appl. Phys. Lett. 98, 222112 (2011).

    Article  Google Scholar 

  14. H.M. Kimura, K. Asami, A. Inoue, and T. Masumoto: The oxidation of amorphous Zr-based binary alloys in air. Corros. Sci. 35, 909 (1993).

    Article  CAS  Google Scholar 

  15. C.Y. Tam and C.H. Shek: Oxidation behavior of Cu60Zr30Ti10 bulk metallic glass. J. Mater. Res. 20 (6), 1396 (2005).

    Article  CAS  Google Scholar 

  16. U. Koster, L. Jastrow, and M. Meuris: Oxidation of Cu60Zr30Ti10 metallic glasses. Mater. Sci. Eng.,A 449, 165 (2007).

    Article  Google Scholar 

  17. C.Y. Tam and C.H. Shek: Oxidation-induced copper segregation in Cu60Zr30Ti10 bulk metallic glass. J. Mater. Res. 21 (4), 851 (2006).

    Article  CAS  Google Scholar 

  18. W. Kai, P.C. Kao, P.C. Lin, I.F. Ren, and J.S.C. Jang: Effects of Si addition on the oxidation behavior of a Cu–Zr-based bulk metallic alloy. Intermetallics 18, 1994 (2010).

    Article  CAS  Google Scholar 

  19. C.Y. Tam and C.H. Shek: Effects of alloying on oxidation of Cu-based bulk metallic glasses. J. Mater. Res. 20 (10), 2647 (2005).

    Article  CAS  Google Scholar 

  20. C.Y. Tam, C.H. Shek, and W.H. Wang: Oxidation behaviour of a Cu-Zr-Al bulk metallic glass. Rev. Adv. Mater. Sci. 18, 107 (2008).

    CAS  Google Scholar 

  21. W. Kai, T.H. Ho, H.H. Hsieh, Y.R. Chen, D.C. Qiao, F. Jiang, G. Fan, and P.K. Liaw: Oxidation behavior of CuZr-based glassy alloys at 400 °C to 500 °C in dry air. Metall. Mater. Trans. A 39A, 1838 (2008).

    Article  CAS  Google Scholar 

  22. L. Liu and K.C. Chan: Oxidation of Zr55Cu30Al10Ni5 bulk metallic glass in the glassy state and the supercooled liquid state. Appl. Phys. A 80, 1737 (2005).

    Article  CAS  Google Scholar 

  23. X. Sun, S. Schneider, U. Geyer, W.L. Johnson, and M.A. Nicolet: Oxidation and crystallization of an amorphous Zr60Al15Ni25 alloy. J. Mater. Res. 11 (11), 2738 (1996).

    Article  CAS  Google Scholar 

  24. Q. Zhang, W. Zhang, G. Xie, and A. Inoue: Glass-forming ability and mechanical properties of the ternary Cu–Zr–Al and quaternary Cu–Zr–Al–Ag bulk metallic glasses. Mater. Trans. 48 (7), 1626 (2007).

    Article  CAS  Google Scholar 

  25. S. Pauly, J. Das, N. Mattern, D.H. Kim, and J. Eckert: Phase formation and thermal stability in Cu–Zr–Ti(Al) metallic glasses. Intermetallics 17, 453 (2009).

    Article  CAS  Google Scholar 

  26. Y.F. Sun, B.C. Wei, Y.R. Wang, W.H. Li, T.L. Cheung, and C.H. Shek: Plasticity-improved Zr–Cu–Al bulk metallic glass matrix composites containing martensite phase. Appl. Phys. Lett. 87, 051905 (2005).

    Article  Google Scholar 

  27. S.M. Ho: On the structural chemistry of zirconium oxide. Mater. Sci. Eng. 54, 23 (1982).

    Article  CAS  Google Scholar 

  28. X. Lu, K. Liang, S. Gu, Y. Zheng, and H. Fang: Effect of oxygen vacancies on transformation of zirconia at low temperatures. J. Mater. Sci. 32, 6653 (1997).

    Article  CAS  Google Scholar 

  29. S. Shukla and S. Seal: Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int. Mater. Rev. 50 (1), 1 (2005).

    Article  Google Scholar 

  30. M.V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer: Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219 (2007).

    Article  CAS  Google Scholar 

  31. M.S. Khan, M.S. Islam, and D.R. Bates: Cation doping and oxygen diffusion in zirconia: A combined atomistic simulation and molecular dynamics study. J. Mater. Chem. 8 (10), 2299 (1998).

    Article  CAS  Google Scholar 

  32. C. Arhammar, C.M. Araujo, and R. Ahuja: Energetics of Al doping and intrinsic defects in monoclinic and cubic zirconia: First-principles calculations. Phys. Rev. B 80, 115208 (2009).

    Article  Google Scholar 

  33. E.M. Levin, C.R. Robbins, and H.F. McMurdie: Phase diagrams for ceramists, 1969 Supplement (American Ceramic Society, Columbus, Ohio, 1969).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Samsung Advanced Institute of Technology and the Global Research Laboratory Program of the Korean Ministry of Education, Science, and Technology. K.R. Lim acknowledges the support from the Second Stage of Brain Korea 21 Project. Stimulating discussions with K.B. Kim, N. Mattern, S. Oswald, and E.S. Park are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Hyang Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lim, K.R., Kim, W.T., Lee, ES. et al. Oxidation resistance of the supercooled liquid in Cu50Zr50 and Cu46Zr46Al8 metallic glasses. Journal of Materials Research 27, 1178–1186 (2012). https://doi.org/10.1557/jmr.2012.23

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.23