Skip to main content

Advertisement

Log in

Interfacial enhancement of poly(ethylene terephthalate)/silica composites using graphene oxide

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, a novel core–shell structured hybrid graphene oxide-encapsulated silica (GO–SiO2) was first fabricated via an electrostatic assembly between negatively charged graphene oxide (GO) sheets and positively charged sub-micro-sized silica. Then, the new kind of hybrid filler was used for the in situ preparation of poly(ethylene terephthalate) (PET)/GO–SiO2 composites. The microstructure and mechanical properties of the prepared composites were analyzed by scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, dynamic mechanical analysis measurements, and tensile test. It was found that GO could be covalently assembled onto the subsized silica surface via its plenty of functional groups that can also provide strong interaction with the PET. As a result, a uniform dispersion of GO–SiO2 hybrids and enhanced interfacial adhesion as well as improved mechanical property have been evidenced. The new concept of using GO as a potent inorganic fillers surface modifier may broaden the use of GO and provides a new idea for the design and fabrication of advanced polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Table I
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. C. Rao, A. Sood, K. Subrahmanyam, and A. Govindaraj: Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752 (2009).

    Article  CAS  Google Scholar 

  3. C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    CAS  Google Scholar 

  4. X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, and Y. Chen: Superparamagnetic graphene oxide–Fe3O4nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 2710 (2009).

    Article  CAS  Google Scholar 

  5. Y. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005).

    Article  CAS  Google Scholar 

  6. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff: Graphene-based ultracapacitors. Nano Lett. 8, 3498 (2008).

    Article  CAS  Google Scholar 

  7. T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, and R. Ruoff: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327 (2008).

    Article  CAS  Google Scholar 

  8. L. Staudenmaier: Verfahren zur darstellung der graphitsaure. Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898). Direct Link: Abstract PDF (393K) References.

    Article  CAS  Google Scholar 

  9. W.S. Hummers Jr. and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  10. F. Kim, L.J. Cote, and J. Huang: Graphene oxide: Surface activity and two-dimensional assembly. Adv. Mater. 22, 1954 (2010).

    Article  CAS  Google Scholar 

  11. A. Lerf, H. He, M. Forster, and J. Klinowski: Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477 (1998).

    Article  CAS  Google Scholar 

  12. K. Liu, L. Chen, Y. Chen, J. Wu, W. Zhang, F. Chen, and Q. Fu: Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. J. Mater. Chem. 21, 8612 (2011).

    Article  CAS  Google Scholar 

  13. Y. Cao, J. Zhang, J. Feng, and P. Wu: Compatibilization of immiscible polymer blends using graphene oxide sheets. ACS Nano 5, 5920 (2011).

    Article  CAS  Google Scholar 

  14. W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S.J. An, and M. Stoller: Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815 (2008).

    Article  CAS  Google Scholar 

  15. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, and G.G. Wallace: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008).

    Article  CAS  Google Scholar 

  16. J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, and J. Huang: Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132, 8180 (2010).

    Article  CAS  Google Scholar 

  17. L. Qiu, X. Yang, X. Gou, W. Yang, Z.F. Ma, G.G. Wallace, and D. Li: Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem. Eur. J. 16, 10653 (2010).

    Article  CAS  Google Scholar 

  18. C. Zhang, L. Ren, X. Wang, and T. Liu: Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media. J. Phys. Chem. 114, 11435 (2010).

    CAS  Google Scholar 

  19. S. Yang, X. Feng, S. Ivanovici, and K. Müllen: Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 49, 8408 (2010).

    Article  CAS  Google Scholar 

  20. T.H. Han, W.J. Lee, D.H. Lee, J.E. Kim, E.Y. Choi, and S.O. Kim: Peptide/graphene hybrid assembly into core/shell nanowires. Adv. Mater. 22, 2060 (2010).

    Article  CAS  Google Scholar 

  21. W. Gao, M. Majumder, L.B. Alemany, T.N. Narayanan, M.A. Ibarra, B.K. Pradhan, and P.M. Ajayan: Engineered graphite oxide materials for application in water purification. ACS Appl. Mater. Interfaces 6, 1821 (2011).

    Article  Google Scholar 

  22. S. Yang, X. Feng, L. Wang, K. Tang, J. Maier, and K. Müllen: Graphene-based nanosheets with a sandwich structure. Angew. Chem. Int. Ed. 49, 4795 (2010).

    Article  CAS  Google Scholar 

  23. X. Yao, X. Tian, D. Xie, X. Zhang, K. Zheng, J. Xu, G. Zhang, and P. Cui: Interface structure of poly (ethylene terephthalate)/silica nanocomposites. Polymer 50, 1251 (2009).

    Article  CAS  Google Scholar 

  24. J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang, and S. Yang: Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir 26, 15830 (2010).

    Article  CAS  Google Scholar 

  25. Y. Mo, M. Zhu, and M. Bai: Preparation and nano/microtribological properties of perfluorododecanoic acid (PFDA)–3-aminopropyltriethoxysilane (APS) self-assembled dual-layer film deposited on silicon. Colloids Surf., A 322, 170 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our great thanks to the National Natural Science Foundation of China for financial support (Grant Nos. 50903048, 21034005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Luo, S., Chen, L. et al. Interfacial enhancement of poly(ethylene terephthalate)/silica composites using graphene oxide. Journal of Materials Research 27, 2360–2367 (2012). https://doi.org/10.1557/jmr.2012.232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.232

Navigation