Skip to main content
Log in

Synthesis and characterization of poly(vinylidene fluoride)/carbon nanotube composite piezoelectric powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocomposite piezoelectric powders comprising polyvinylidene fluoride (PVDF) and carbon nanotubes (CNTs) were synthesized using a novel process, which combines ultrasonication and solvent-nonsolvent mixture-induced crystallization at very low temperatures ≤10 °C. The morphological and thermal properties of these composite powders were extensively studied. Scanning electron microscopy characterization showed that these composite powders have polymer particles with an average diameter of 150 nm. Fourier transform infrared spectroscopy, differential scanning calorimetry and wide-angle x-ray scattering analyses confirmed that at CNT concentrations of 0.05–20 wt% this process introduces the β-phase in both PVDF/single-walled CNT (SWCNT) and PVDF/multiwalled CNT (MWCNT) composite powders. Both types of composite powders (PVDF-multiwalled and PVDF-single-walled nanotubes) have shown piezoelectric response at different voltages up to 1% loading of multiwalled nanotubes (MWCNTs) and 0.5% loading of single-walled nanotubes (SWCNTs) in composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Table II
Fig. 5
Fig. 6
Table III

Similar content being viewed by others

References

  1. P.M. Ajayan and O. Stephan: Aligned carbon nanotube-arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212 (1994).

    Article  CAS  Google Scholar 

  2. M. Moniruzzaman and K.I. Winey: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 5194 (2006).

    Article  CAS  Google Scholar 

  3. M. Cadek, J.N. Coleman, K.P. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J.B. Nagy, K. Szostak, F. Béguin, and W.J. Blau: Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano. Lett. 4(2), 353 (2004).

    Article  CAS  Google Scholar 

  4. N. Grossiord, J. Loos, O. Regev, and C.E Koning: Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 18(5), 1089 (2006).

    Article  CAS  Google Scholar 

  5. C. McClory, S.J. Chin, and R. McNally: Polymer/carbon nanotube composites. Aust. J. Chem. 62, 762 (2009).

    Article  CAS  Google Scholar 

  6. P.M. Ajayan and J.M. Tour: Nanotube composites. Nature 447, 1066 (2007).

    Article  CAS  Google Scholar 

  7. M.Q. Tran, M.S.P Shaffer, and A. Bismarck: Manufacturing carbon nanotube/PVDF nanocomposite powders. Macromol. Mater. Eng. 293, 111 (2008).

    Google Scholar 

  8. S. Yun, V. Lo, J. Noorman, J. Davis, R.A. Russell, P.J. Holden, and G.E. Gadd: Morphology of composite particles of single-walled carbon nanotubes/biodegradable polyhydroxyalkanoates prepared by spray drying. Polym. Bull. 64, 99 (2010).

    Article  CAS  Google Scholar 

  9. H. Kawai: The piezoelectricity of poly (vinylidene fluoride). J. Appl. Phys. 8, 975 (1969).

    Article  CAS  Google Scholar 

  10. A.J. Lovinger: Ferroelectric polymers. Science 220, 115 (1983).

    Article  Google Scholar 

  11. J.S. Lee, G.H. Kim, K.H. Oh, H.T. Kim, S.S. Hwang, and S.M. Hong: Crystal structure and ferroelectric properties of poly(vinylidene fluoride)-carbon nanotube nanocomposite film. Mol. Cryst. Liq. Cryst. 491, 247 (2008).

    Article  CAS  Google Scholar 

  12. R. Gregorio Jr: Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 100, 3272 (2006).

    Article  CAS  Google Scholar 

  13. Y.W. Nam, W.N. Kim, Y.H. Cho, D.W. Chae, G.H. Kim, S.P. Hong, S.S Hwang, and S.M. Hong: Morphology and physical properties of binary blend based on PVDF and multiwalled carbon nanotube. Macromol. Symp. 249–, 478 (2007).

    Article  CAS  Google Scholar 

  14. M.C. Branciforti, V. Sencades, S. Lanceros-Mendez, and R. Gregorio: New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the β phase. J. Polym. Sci., Part B: Polym. Phys. 45, 2793 (2007).

    Article  CAS  Google Scholar 

  15. N. Levi, R. Czrew, S. Xing, P. Iyer, and D.L. Carroll: Properties of polyvinylidene difluoride-carbon nanotube blends. Nano Lett. 4, 1267 (2004).

    Article  CAS  Google Scholar 

  16. S. Manna and A.K. Nandi: Piezoelectric β-polymorph in poly(vinylidene fluoride)-functionalized multiwalled carbon nanotube nanocomposite. J. Phys. Chem. C 111, 14670 (2007).

    Article  CAS  Google Scholar 

  17. S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang, and Z. Zhao: Formation mechanism of β–phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42, 8870 (2009).

    Article  CAS  Google Scholar 

  18. M. Dukat and A. Zaryicka: Dielectric and piezoelectric properties of PZT type ceramics obtained by sol-gel method. Arch. Acoust. 32, 65 (2007).

    Google Scholar 

  19. Z. Zhao, W. Zheng, W. Yu, and B. Long: Electrical conductivity of poly(vinylidene fluoride)/carbon nanotube composites with spherical substructure. Carbon 47, 2112 (2009).

    Article  CAS  Google Scholar 

  20. S.J. Zhang and S. Kumar: Shaping polymer particles by carbon nanotubes. Macromol. Rapid Commun. 29, 557 (2008).

    Article  CAS  Google Scholar 

  21. R. Gregorio Jr. and E.M. Ueno: Effect of crystalline phase, orientation and temperature on the dielectric properties of poly(vinylidene fluoride) (PVDF). J. Mater. Sci. 34, 4489 (1979).

    Article  Google Scholar 

  22. G. Guerra, F.E. Karasz, and W.J. Macknight: On blends of poly(vinylidene fluoride) and poly(vinyl) fluoride. Macromolecules 19, 1935 (1986).

    Article  CAS  Google Scholar 

  23. J. Dutta and A.K. Nandi: Cocrystallization of poly(vinylidene flouoride) and vinylidene fluoride-tetrafluoroethylene blends: 3. Structural study. Polymer 38, 2719 (1997).

    Article  Google Scholar 

  24. M. Kobayashi, K. Tashiro, and H. Tadokoro: Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8, 158 (1975).

    Article  CAS  Google Scholar 

  25. W. Huang, K. Edenzon, L. Fernandez, S. Razmpour, J. Woodburn, and P. Cebe: Nanocomposites of poly(vinylidene fluoride) with multiwalled carbon nanotubes. J. Appl. Polym. Sci. 115, 3238 (2010).

    Article  CAS  Google Scholar 

  26. D. Damjanovic and R.E. Newnham: Electrostrictive and piezoelectric materials for actuator applications. J. Intell. Mater. Syst. Struct. 3, 190 (1992).

    Article  Google Scholar 

  27. X. Wang, D. Guyomar, K. Yuse, M. Lallart, and L. Petit: Impact force detection using an energy flow estimator with piezoelectric sensors. Front. Mech. Eng. Chin. 5, 194–203 (2010).

    Article  Google Scholar 

  28. S. Muensita and P. Rakbamrung: Low- and high-content nano-loaded electroactive polyvinylidene fluoride polymer in Nanoelectronics Conference (INEC), 3rd International. (IEEE, Hong Kong, China, 2010) pp. 378.

    Google Scholar 

  29. B. Satish, K. Sridevi, and M.S. Vijaya: Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J. Phys. D: Appl. Phys. 35, 2048 (2002).

    Article  CAS  Google Scholar 

  30. D.K. Das-Gupta: Piezo- and pyroelectricity in polymer electrets and their applications, in (ISE 9), 9th International Symposium on Electrets. (IEEE, Shanghai, China, 1996) 807–812.

    Google Scholar 

  31. X. Li and Y. Zhang: A constitutive model for piezoelectric paint with mixed connectivity. J. Intell. Mater. Syst. Struct. 21, 1213 (2010).

    Article  Google Scholar 

  32. G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang: Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multiwalled carbon nanotubes. Polymer 47, 480 (2006).

    Article  CAS  Google Scholar 

  33. A. Moisala, Q. Li, I.A. Kinloch, and A.H. Windle: Thermal and electrical conductivity of single- and multiwalled carbon nanotube-epoxy composite. Compos. Sci. Technol. 66, 1285 (2006).

    Article  CAS  Google Scholar 

  34. P. Slobodian, A. Lengálová, P. Sáha, and M. Šlouf: Poly(methyl methacrylate)/multiwalled carbon nanotubes composites prepared by solvent cast technique. J. Reinf. Plast. Compos. 26, 1705 (2007).

    Article  CAS  Google Scholar 

  35. J.H. Kang, C. Park, S.J. Gaik, S.E. Lowther, and J.S. Harrison: The effect of single-walled carbon nanotubes on the dipole orientation and piezoelectric properties of polymer composites. Nano 1, 77 (2006).

    Article  CAS  Google Scholar 

  36. H. Zhang, J.F. Li, and B.P. Zhang: Sintering and piezoelectric properties of cofired lead zirconate titanate/Ag composites. J. Am. Chem. Soc. 89, 1330 (2006).

    Google Scholar 

  37. X. Liu, C. Xiong, H. Sun, L.J. Dong, R. Li, and Y. Liu: Piezoelectric and dielectric properties of PZT/PVC and graphite doped with PZT/PVC composites. Mater. Sci. Eng., B 127, 261 (2006).

    Article  CAS  Google Scholar 

  38. A. Qureshi, A. Mergen, M.S. Eroglu, N.L. Singh, and A. Gulluoglu: Dielectric properties of polymer composites filled with different metals. J. Macromol. Sci. Part A Pure Appl. Chem. 45, 462 (2008).

    Article  CAS  Google Scholar 

  39. X.Y. Huang, P.K. Jiang, and C.U. Kim: Electrical properties of polyethylene/aluminum nanocomposites. J. Appl. Phys. 102, 124103 (2007).

    Article  CAS  Google Scholar 

  40. B.S. Mitchell: An Introduction to Materials Engineering and Science for Chemical and Materials Engineers (Wiley-IEEE, Canada, 2004); p. 816.

    Google Scholar 

  41. M.B. Bryning, M.F. Islam, J.M. Kikkawa, and A.G. Yodh: Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv. Mater. 17, 1186 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the High-Performance Materials Institute of Florida State University. The corresponding author also expresses sincere thanks to Dr. Eric Lochner in the Department of Physics, Florida State University for his discussions on the WAXS results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhunu Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, J., Nash, N., Cottinet, PJ. et al. Synthesis and characterization of poly(vinylidene fluoride)/carbon nanotube composite piezoelectric powders. Journal of Materials Research 27, 2352–2359 (2012). https://doi.org/10.1557/jmr.2012.230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.230

Navigation