Skip to main content
Log in

Tunable synthesis of enhanced photodegradation activity of brookite/anatase mixed-phase titanium dioxide

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using titanium sulfate, Ti(SO4)2, as precursor and sodium hydroxide, NaOH, as adjusting reagent, pure brookite, pure anatase, and mixed-phase titanium dioxide (TiO2) with tunable brookite/anatase ratios were synthesized via a hydrothermal process. The samples were characterized by x-ray diffractionspectrometry, ultraviolet-visible diffuse reflectance spectrometry, transmission electron microscopy, and Brunauer-Emmett-Teller measurement. Photocatalytic degradation of Rhodamine B in aqueous solution served as a probe reaction to evaluate the photocatalytic activity of the as-prepared nanocomposites under visible irradiation (λ > 400 nm). The mixed-phase TiO2 exhibits higher photodegradation activity than single phase TiO2. The sample with 63.1% brookite and 36.9% anatase shows the highest degradation activity. Possible mechanism attributing to the enhanced activity was proposed based on the strucutre and surface property of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  2. C.L. Yu, K. Yang, J.C. Yu, F.F. Cao, X. Li, and X.C. Zhou: Fast fabrication of Co3O4 and CuO/BiVO4 composite photocatalysts with high crystallinity and enhanced photocatalytic activity via ultrasound irradiation. J. Alloys Compd. 509, 4547 (2011).

    Article  CAS  Google Scholar 

  3. J.G. Yu, J.C. Yu, M.K.P. Leung, W.K. Ho, B. Cheng, X.J. Zhao, and J.C. Zhao: Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J. Catal. 217, 69 (2003).

    CAS  Google Scholar 

  4. J. Krysa and J. Jirkovsky: Electrochemically assisted photocatalytic degradation of oxalic acid on particulate TiO2 film in a batch mode plate photoreactor. J. Appl. Electrochem. 32, 591 (2002).

    Article  CAS  Google Scholar 

  5. C.B. Almquist and P. Biswas: Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J. Catal. 212, 145 (2002).

    Article  CAS  Google Scholar 

  6. Z.B. Zhang, C.C. Wang, R. Zakaria, and J.Y. Ying: Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B. 102, 10871 (1998).

    Article  CAS  Google Scholar 

  7. J. Ovenstone and K. Yanagisawa: Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination. Chem. Mater. 11, 2770 (1999).

    Article  CAS  Google Scholar 

  8. J. Augustynski: The role of the surface intermediates in the photoelectrochemical behavior of anatase and rutile TiO2. Electrochim. Acta 38, 43 (1993).

    Article  CAS  Google Scholar 

  9. R. Bickley, T. Gonzalez-Carreno, J. Lees, L. Palmisano, and R. Tilley: A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 92, 178 (1991).

    Article  CAS  Google Scholar 

  10. G.H. Li and K.A. Gray: Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing. Chem. Mater. 19, 1143 (2007).

    Article  CAS  Google Scholar 

  11. B. Ohtani, J. Handa, S. Nishimoto, and T. Kagiya: Highly active semiconductor photocatalyst: Extra-fine crystallite of brookite TiO2 for redox reaction in aqueous propan-2-ol and/or silver sulfate solution. Chem. Phys. Lett. 120, 292 (1985).

    Article  CAS  Google Scholar 

  12. T.A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, and D.W. Bahnemann: Tailored titanium dioxide nanomaterials: Anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mater. 22, 2050 (2010).

    Article  CAS  Google Scholar 

  13. J.M. Xie, X.M. Lü, J. Liu, and H.M. Shu: Brookite titania photocatalytic nanomaterials: synthesis, properties, and applications. Pure Appl. Chem. 81, 2407–2415 (2009).

    Article  CAS  Google Scholar 

  14. P.K. Naicker, P.T. Cummings, H. Zhang, and J.F. Banfield: Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J. Phys. Chem. B 109, 15243–15249 (2005).

    Article  CAS  Google Scholar 

  15. M. Olivares, M.C. Zuluaga, L.A. Ortega, X. Murelaga, A. Alonso-Olazabal, M. Urteaga, L. Amundaray, I. Alonso-Martin, and N. Etxebarria: Characterization of fine wall and eggshell Roman pottery by Raman spectroscopy. J. Raman Spectrosc. 41, 1543–1549 (2010).

    Article  Google Scholar 

  16. H. Xu and L.Z. Zhang: Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios. J. Phys. Chem. C 113, 1785–1790 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (Grant No. 21003065), Natural Science Foundation of Jiangsu Province (Grant No. BK2010166), and Industry High Technology Foundation of Jiangsu (BE2010144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimin Xie.

Appendix

Appendix

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting u]http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, X., Mao, D., Wei, X. et al. Tunable synthesis of enhanced photodegradation activity of brookite/anatase mixed-phase titanium dioxide. Journal of Materials Research 28, 400–404 (2013). https://doi.org/10.1557/jmr.2012.226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.226

Navigation