Skip to main content
Log in

Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Yb3+:Sr3Y2(BO3)4 crystals have been grown successfully by Czochralski method. The compound crystallizes in orthorhombic system, space group Pnma, with a = 7.4062(3) Å, b = 16.0030(7) Å, c = 8.7130(4) Å, α = β = γ = 90°, and Z = 4. Yb3+:Sr3Y2(BO3)4 has three cationic sites and two kinds of boron sites. The crystalline quality of the Yb3+:Sr3Y2(BO3)4 single crystal was verified by the width of the x-ray diffraction peak in the x-ray rocking curves measurement. The absorption spectrum, emission spectrum, and fluorescence lifetime of the Yb3+:Sr3Y2(BO3)4 crystal were detected at room temperature. The laser performance parameters βmin, Ipsat, and Imin were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
TABLE I.

Similar content being viewed by others

References

  1. R.M. Kolbas, N.G. Anderson, W.D. Laidig, Y. Sin, Y.C. Lo, K.Y. Hsieh, and Y.J. Yang: Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers. IEEE J. Quantum Electron. 24, 1605 (1988).

    Article  CAS  Google Scholar 

  2. L.D. De Loach, S.A. Payne, L.L. Chase, L.K. Smith, and W.L. Kway: Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications. IEEE J. Quantum Electron. 29, 1179 (1993).

    Article  Google Scholar 

  3. T. Taira, W.M. Tulloch, R.L. Byer, and T. Kobayashi: Single axial-mode oscillation of a coupled cavity Yb:YAG laser. OSA TOPS Adv. Solid-State Lasers 1, 14 (1996).

    Google Scholar 

  4. B.V. Mill, A.M. Tkachuk, G.I. Ershova, D.I. Mironov, and A.A. Nikitichev: Growth and spectroscopic properties of Ln2Ca3B4O12-Nd3+ (Ln = Y, La, Gd) crystals. Opt. Spectrosc. 81, 201 (1996).

    Google Scholar 

  5. B.V. Mill, A.M. Tkachuk, and E.L. Belokoneva: Growth, structure and intensities of spectra of Ln2Ca3B4O12-Nd3+ crystals (Ln=Y, La, Gd). Opt. Spectrosc. 84, 65 (1998).

    Google Scholar 

  6. P.H. Haumesser, R. Gaumé, J.M. Benitez, B. Viana, B. Ferrand, G. Aka, and D. Vivien: Czochralski growth of six Yb-doped double borate and silicate laser materials. J. Cryst. Growth 233, 233 (2001).

    Article  CAS  Google Scholar 

  7. B.V. Mill, A.M. Tkachuk, E.L. Belokoneva, G.I. Ershova, and D.I. Mironov: Spectroscopic studies of Ln2Ca3B4O12-Nd3+ (Ln = Y, La, Gd) crystals. J. Alloys Compd. 277, 291 (1998).

    Article  Google Scholar 

  8. Y. Wang, C.Y. Tu, C.C. Huang, and Z.Y. You: Sturdy of crystal Yb3+:Ca3Y2(BO3)4. J. Mater. Res. 19, 1023 (2004).

    Google Scholar 

  9. B. Wei, Z.B. Lin, and G.F. Wang: Growth and spectral properties of Er3+/Yb3+ co-doped Ca3Ln2(BO3)4 (Ln=Gd, La) crystals. J. Cryst. Growth 295, 241 (2006).

    Article  CAS  Google Scholar 

  10. H.D. Jiang, J.Y. Wang, H.J. Zhang, X.B. Hu, B. Teng, C.Q. Zhang, and P. Wang: Spectroscopic properties of Yb-doped GdCa4O(BO3)3 crystal. Chem. Phys. Lett. 357, 15 (2002).

    Article  CAS  Google Scholar 

  11. P.H. Haumesser, R. Gaumé, B. Viana, and D. Vivien: Determination of laser parameters of Ytterbium-doped oxide crystalline materials. J. Opt. Soc. Am. B: Opt. Phys. 19, 2365 (2002).

    Article  CAS  Google Scholar 

  12. H.D. Jiang, J.Y. Wang, H.J. Zhang, X.B. Hu, B. Phil, and A.P. James: Spectral and luminescent properties of Yb3+ ions in YCa4O(BO3)3 crystal. Chem. Phys. Lett. 361, 499 (2002).

    Article  CAS  Google Scholar 

  13. F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien: Ytterbium-doped Ca4GdO(BO3)3: An efficient infrared laser and self-frequency doubling crystal. J. Opt. Soc. Am. B: Opt. Phys. 16, 164 (1999).

    Article  CAS  Google Scholar 

  14. V.E. Kisel, A.E. Troshin, V.G. Shcherbitsky, N.V. Kuleshov, V.N. Matrosov, T.A. Matrosova, M.I. Kupchenko, F. Brunner, R. Pashotta, F. Morrier-Genoud, and U. Keller: Femtosecond pulse generation with a diode pumped Yb3+:YVO4 laser. Opt. Lett. 30, 1150 (2005).

    Article  CAS  Google Scholar 

  15. F. Druon, S. Ricaud, D.N. Papadopoulos, A. Pellegrina, P. Camy, J.L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges: On Yb: CaF2 and Yb: SrF2: Review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance. Opt. Mater. Express 1, 489 (2011).

    Article  Google Scholar 

  16. S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner: Ultrashort pulse Yb: LaSc3(BO3)4 mode-locked oscillator. Opt. Express 15, 15539 (2007).

    Article  CAS  Google Scholar 

  17. A. Yoshida, A. Schmidt, H. Zhang, J. Wang, J. Liu, C. Fiebig, K. Paschke, G. Erbert, V. Petrov, and U. Griebner: 42-fs diode-pumped Yb: Ca4YO(BO3)4 oscillator. Opt. Express 18, 24325 (2010).

    Article  CAS  Google Scholar 

  18. M. Tokurakawa, A. Shirakawa, K.I. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A.A. Kaminskii: Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser. Opt. Express 17, 3353 (2009).

    Article  CAS  Google Scholar 

  19. D.N. Papadopoulos, F. Druon, J. Boudeile, I. Martial, M. Hanna, P. Georges, P.O. Petit, P. Goldner, and B. Viana: Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser. Opt. Lett. 34, 196 (2009).

    Article  CAS  Google Scholar 

  20. J.A. Berger, M.J. Greco, and W.A. Schroeder: High-power, femtosecond, thermal-lens-shaped Yb:KGW oscillator. Opt. Express 16, 8629 (2008).

    Article  CAS  Google Scholar 

  21. J.J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, and E. Heumann: Continuous-wave laser action of Yb3+-doped lanthanum scandium borate. Appl. Phys. B 80, 159 (2005).

    Article  CAS  Google Scholar 

  22. P. Wang, J.M. Dawes, P. Dekker, L.L. Chase, D.S. Knowles, J. Piper, and B. Lu: Growth and evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser crystal. J. Opt. Soc. Am. B: Opt. Phys. 16, 63 (1999).

    Article  CAS  Google Scholar 

  23. S. Pan, Z. Hu, Z.B. Lin, and G.F. Wang: Growth and optical properties of Yb3+-doped α- Ba3Y(BO3)3 crystal. J. Cryst. Growth 263, 214 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, G. Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal. Journal of Materials Research 27, 2106–2110 (2012). https://doi.org/10.1557/jmr.2012.210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.210

Navigation