Skip to main content
Log in

Comparative studies on total energetics of nonequivalent hexagonal polytypes for group IV semiconductors and group III nitrides

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the results of the systematic investigation into correlations between energetics and hexagonal stacking configurations for carbon, silicon, SiC, BN, AlN, GaN, and InN polytypes with sp3-bonded networks. The atomistic geometry, energetics, and electronic structure for these compounds with up to the periodic stacking length of L = 8 have been carefully calculated based on the density functional theory within the generalized gradient approximation (GGA). Using the Axial Next-Nearest-Neighbor Ising model extracted from the GGA calculations, we have also studied the energetics for more than 6 million kinds of nonequivalent stacking polytypes with up to L = 30, whose configurations have been deduced by the efficient polytype generation algorithm [E. Estevez-Rams and J. Martinez-Mojicar, Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 529 (2008)], and illustrated some trends of structural and energetic properties for these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
TABLE II.
TABLE III.
TABLE IV.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE V.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. E. Estevez-Rams and J. Martinez-Mojicar: The symmetry of HK codes representing close-packed structures and the efficient generation of non-equivalent polytypes of a given length. Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 529 (2008).

    Article  CAS  Google Scholar 

  2. N. Bernstein, H.J. Gotsis, D.A. Papaconstantopoulos, and M.J. Mehl: Tight-binding calculations of the band structure and total energies of the various polytypes of silicon carbide. Phys. Rev. B 71, 075203 (2005).

    Article  CAS  Google Scholar 

  3. C. Raffy, J. Furthmüller, and F. Bechstedt: Properties of hexagonal polytypes of group-IV elements from first-principles calculations. Phys. Rev. B 66, 075201 (2002).

    Article  CAS  Google Scholar 

  4. K. Kobayashi and S. Komatsu: First-principles study of BN, SiC, and AlN polytypes. J. Phys. Soc. Jpn. 77, 084703 (2008).

    Article  CAS  Google Scholar 

  5. C.H. Park, B-H. Cheong, K-H. Lee, and K.J. Chang: Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys. Rev. B 49, 4485 (1994).

    Article  CAS  Google Scholar 

  6. S. Limpijumnong and W.R.L. Lambrecht: Total energy differences between SiC polytypes revisited, Phys. Rev. B 57, 12017 (1998).

    Article  CAS  Google Scholar 

  7. X.Y. Xue, R.Q. Zhang, and X.H. Zhang: Structural and electronic properties of 9R diamond polytype. Solid State Commun. 136, 41 (2005).

    Article  CAS  Google Scholar 

  8. P. Käckell, B. Wenzien, and F. Bechstedt: Influence of atomic relaxations on the structural properties of SiC polytypes from ab initio calculations. Phys. Rev. B 50, 17037 (1994).

    Article  Google Scholar 

  9. M.J. Rutter and V. Heine: Energetics of stacking boundaries on the {0001} surfaces of silicon carbide. J. Phys. Condens. Matter 9, 8213 (1997).

    Article  CAS  Google Scholar 

  10. N.W. Jepps and T.F. Page: Polytypic transformations in silicon carbide. Prog. Cryst. Growth Charact. Mater. 7, 259 (1983).

    Article  CAS  Google Scholar 

  11. H. Jagodzinski: Polytypism in SiC crystals. Acta Crystallogr. 7, 300 (1954).

    Article  CAS  Google Scholar 

  12. C-Y. Yeh, Z.W. Lu, S. Froyen, and A. Zunger: Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086 (1992).

    Article  CAS  Google Scholar 

  13. A.F. Wright: Basal-plane stacking faults and polymorphism in AlN, GaN, and InN. J. Appl. Phys. 82, 5259 (1997).

    Article  CAS  Google Scholar 

  14. M.T. Sebastian and P. Krishna: Random, Non-Random and Periodic Faulting in Crystals (Gordon and Breach, Amsterdam, Netherlands, 1994).

    Google Scholar 

  15. S. Clark, M. Segall, P. Pickard, P. Hasnip, M. Probert, K. Refson, and M. Payne: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005). The CASTEP code is available from Accelrys Inc.

    CAS  Google Scholar 

  16. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Article  CAS  Google Scholar 

  17. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  18. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  19. A. Bauer, J. Kräußlich, L. Dressler, P. Kuschnerus, J. Wolf, K. Goetz, and P. Käckell: High-precision determination of atomic positions in crystals: The case of 6H- and 4H-SiC. Phys. Rev. B 57, 2647 (1998).

    Article  CAS  Google Scholar 

  20. W.R.L. Lambrecht, S. Limpijumnong, S.N. Rashkeev, and B. Segall: Electronic band structure of SiC polytypes: A discussion of theory and experiment. Phys. Status Solidi B 202, 5 (1997).

    Article  CAS  Google Scholar 

  21. C. Cheng, R.J. Needs, and V. Heine: Inter-layer interactions and the origin of SiC polytypes. J. Phys. C: Solid State Phys. 21, 1049 (1988).

    Article  CAS  Google Scholar 

  22. C. Cheng, V. Heine, and I.L. Jones: Silicon carbide polytypes are equilibrium structures. J. Phys. Condens. Matter 2, 5097 (1990).

    Article  CAS  Google Scholar 

  23. V. Heine, C. Cheng, and R.J. Needs: The preference of silicon carbide for growth in the metastable cubic form. J. Am. Ceram. Soc. 74, 2630 (1991).

    Article  CAS  Google Scholar 

  24. A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini: First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory. Phys. Rev. B 64, 045208 (2001).

    Article  CAS  Google Scholar 

  25. K. Karch and F. Bechstedt: Ab initio lattice dynamics of BN and AlN: Covalent versus ionic forces. Phys. Rev. B 56, 7404 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Director General of Corporate Research and Development Laboratories, T. Miyake for giving us an opportunity to carry out this research. The authors’ gratitude also goes to M. Igarashi, Y. Ohashi, A. Yauchi, and Y. Sumitomo (Sumitomo Metal Industries, Ltd.) for their encouragement in this work. The authors would like to also thank Prof. K. Suzuki for fruitful discussions on the SiC polytype systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Moriguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriguchi, K., Kamei, K., Kusunoki, K. et al. Comparative studies on total energetics of nonequivalent hexagonal polytypes for group IV semiconductors and group III nitrides. Journal of Materials Research 28, 7–16 (2013). https://doi.org/10.1557/jmr.2012.206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.206

Navigation