Skip to main content
Log in

Fabrication of size-selected bimetallic nanoclusters using magnetron sputtering

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Copper–tin (CuxSn1−x) nanocluster is a promising system for gas sensing applications, mainly because of its sensitivity and selectivity for H2S. In this work, pure Sn and Cu as well as composite CuxSn1−x nanoclusters were synthesized using the dc magnetron sputtering gas condensation technique. Nanoclusters with different Sn to Cu ratios were produced by changing the ratio of Sn and Cu in the target. The dependence of Sn, Cu, and CuxSn1−x nanoclusters’ size distribution on various source parameters, such as the inert gas flow rate and aggregation length, has been investigated in detail. The results show that as the inert gas flow rate increases, the mean nanocluster size increases for Sn, decreases for Cu, while increases and then decreases for CuxSn1−x. The results could be understood in terms of the contribution percentage of the nanocluster formation mechanism. Furthermore, this work demonstrates the ability of tuning the CuxSn1−x nanoclusters’ size and composition by a proper optimization of the source operation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Mazzoldi, G.W. Arnold, G. Battaglin, F. Gonella, and R.F. Haglund: Metal nanocluster formation by ion implantation in silicate glasses. J. Nonlinear Opt. Phys. Mater. 5, 285 (1996).

    Article  CAS  Google Scholar 

  2. A. Martucci, M. De Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick: Silver-sensitized erbium-doped ion-exchanged sol-gel waveguides. Appl. Phys. A 80, 557 (2005).

    Article  CAS  Google Scholar 

  3. Karvianto and G.M. Chow: The effects of surface and surface coatings on fluorescence properties of hollow NaYF4:Yb, Er upconversion nanoparticles. J. Mater. Res. 26, 70 (2011).

    Article  Google Scholar 

  4. C. de Julián Fernández, C. Sangregorio, G. Mattei, G. De, A. Saber, S. Lo Russo, G. Battaglin, M. Catalano, E. Cattaruzza, F. Gonella, D. Gatteschi, and P. Mazzoldi: Structure and magnetic properties of alloy-based nanoparticles silica composites prepared by ion-implantation and sol-gel techniques. Mater. Sci. Eng., C 15, 59 (2001).

    Article  Google Scholar 

  5. C. de Julián Fernández, G. Mattei, C. Maurizio, E. Cattaruzza, S. Padovani, G. Battaglin, F. Gonella, D’Acapito F., and P. Mazzoldi: Magnetic properties of Co-Cu nanoparticles dispersed in silica matrix. J. Magn. Magn. Mater. 187, 290 (2005).

    Google Scholar 

  6. V. Aroutiounian: Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int. J. Hydrogen Energy 32, 1145 (2007).

    Article  CAS  Google Scholar 

  7. P. Bonzi, L.E. Depero, F. Parmigiani, C. Perego, G. Sberveglieri, and G. Quattroni: Formation and structure of tin-iron oxide thin film CO sensors. J. Mater. Res. 9, 1250 (1994).

    Article  CAS  Google Scholar 

  8. J.M. Lee, B. Moon, C. Shim, B. Kim, M.B. Lee, D.D. Lee, and J.H. Lee: H2S microgas sensorfabricated by thermal oxidation of Cu/Sn double layer. Sens. Actuators, B 108, 84 (2005).

    Article  CAS  Google Scholar 

  9. V. Gupta, S. Mozumdar, A. Chowdhuri, and K. Sreenivas: Influence of CuO catalyst in the nanoscale range on SnO2 surface for H2S gas sensing applications. Pramana J. Phys. 65, 647 (2005).

    Article  CAS  Google Scholar 

  10. F. Wang, M. Zhao, and X. Song: Influence of the preparation conditions on the morphology and electrochemical performance of nano-sized Cu-Sn alloy anodes. J. Alloys Compd. 439, 249 (2007).

    Article  CAS  Google Scholar 

  11. V. Kumar, S. Sen, K.P. Muthe, N.K. Gaur, S.K. Gupta, and J.V. Yakhmi: Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sens. Actuators, B 138, 587 (2009).

    Article  CAS  Google Scholar 

  12. X. Kong and Y. Li: High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sens. Actuators, B 105, 449 (2005).

    Article  CAS  Google Scholar 

  13. X. Xue, L. Xing, Y. Chen, S. Shi, Y. Wang, and T. Wang: Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods. J. Phys. Chem. C 112, 12157 (2008).

    Article  CAS  Google Scholar 

  14. A. Chowdhuri, V. Gupta, and K. Sreenivas: Fast response H2S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO2. Sens. Actuators, B 93, 572 (2003).

    Article  CAS  Google Scholar 

  15. A.I. Ayesh, N. Qamhieh, H. Ghamlouche, S. Thaker, and M. El-Shaer: Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source. J. Appl. Phys. 107, 034317 (2010).

    Article  Google Scholar 

  16. A.I. Ayesh, S. Thaker, N. Qamhieh, and H. Ghamlouche: Size-controlled Pd nanocluster grown by plasma gas-condensation method. J. Nanopart. Res. 13, 1125 (2011).

    Article  CAS  Google Scholar 

  17. A.I. Ayesh, N. Qamhieh, S.T. Mahmoud, and H. Alawadhi: Production of size-selected CuxSn1-x nanoclusters. Adv. Mater. Res. 295–, 70–73 (2011).

    Article  Google Scholar 

  18. P.H. Dawson: Quadrupole Mass Spectrometry and Its Applications (Elsevier Press, New York, 1976).

    Google Scholar 

  19. M. Ohring: Materials Science of Thin Films, 2nd ed. (Academic Press, San Diego, CA, 2002).

    Google Scholar 

  20. S. Pratontep, S.J. Carroll, C. Xirouchaki, M. Streun, and R.E. Palmer: Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev. Sci. Instrum. 76, 045103 (2005).

    Article  Google Scholar 

  21. E.L. Knuth: Size correlations for condensation clusters produced in free-jet expansions. J. Chem. Phys. 107, 9125 (1997).

    Article  CAS  Google Scholar 

  22. A.N. Banerjee, R. Krishna, and B. Das: Size controlled deposition of Cu and Si nano-clusters by an ultra-high vacuum sputtering gas aggregation technique. Appl. Phys. A 90, 299 (2008).

    Article  CAS  Google Scholar 

  23. H. Haberland: Nanoclusters of Atoms and Molecules (Springer, Berlin, 1995).

    Google Scholar 

  24. S. Yamamuro, K. Sumiyama, W. Sakurai, and K. Suzuki: Cr cluster deposition by plasma-gas-condensation method. Supramol. Sci. 5, 239 (1998).

    Article  CAS  Google Scholar 

  25. T. Hihara and K. Sumiyama: Formation and size control of a Ni cluster by plasma gas condensation. J. Appl. Phys. 84, 5270 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by United Arab Emirates University under the Grant No. FOS/IRG-23/11. The authors would like to thank Mr. S. Tariq at FMHS, United Arab Emirates University for TEM images. Also they would like to thank the National X-ray Fluorescence Lab at the University of Sharjah for XRF analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad I. Ayesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayesh, A.I., Qamhieh, N., Mahmoud, S.T. et al. Fabrication of size-selected bimetallic nanoclusters using magnetron sputtering. Journal of Materials Research 27, 2441–2446 (2012). https://doi.org/10.1557/jmr.2012.205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.205

Navigation