Skip to main content

Advertisement

Log in

Formation of nanopore arrays on stainless steel surface by anodization for visible-light photocatalytic degradation of organic pollutants

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

There is high scientific and technological interest to develop photocatalytic coatings on stainless steels surface to remove fouling under light radiation. In this study, a novel method is described to prepare photocleanable stainless steel by anodization to form aligned nanopore arrays (NPAs) on the surface in ethylene glycol containing perchloric acid. Perchloric acid concentration, applied voltage and anodization time of anodization process were investigated. The NPAs are mainly composed of iron (III) oxide and chromium (III) oxide. This photocleanable stainless steel has remarkable visible-light photocatalytic activities, which show potential applications particularly for outdoor purpose. Moreover, the stainless steel surface remains highly polished and exhibits good corrosion resistance after anodization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Rosmaninho, O. Santos, T. Nylander, M. Paulsson, M. Beuf, T. Benezech, S. Yiantsios, N. Andritsos, A. Karabelas, G. Rizzo, H. Muller-Steinhagen, and L.F. Melo: Modified stainless steel surfaces targeted to reduce fouling-evaluation of fouling by milk components. J. Food Eng. 80(4), 1176 (2007).

    Article  CAS  Google Scholar 

  2. M. Ignatova, S. Voccia, S. Gabriel, B. Gilbert, D. Cossement, R. Jerome, and C. Jerome: Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: Synthesis, characterization, and properties. Langmuir 25(2), 891 (2009).

    Article  CAS  Google Scholar 

  3. J. Tavares, A. Shahryari, J. Harvey, S. Coulombe, and S. Omanovic: Corrosion behavior and fibrinogen adsorptive interaction of SS 316L surfaces covered with ethylene glycol plasma polymer-coated Ti nanoparticles. Surf. Coat. Technol. 203(16), 2278 (2009).

    Article  CAS  Google Scholar 

  4. A. Fujishima, X.T. Zhang, and D.A. Tryk: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515 (2008).

    Article  CAS  Google Scholar 

  5. D. Ravelli, D. Dondi, M. Fagnoni, and A. Albini: Photocatalysis. A multifaceted concept for green chemistry. Chem. Soc. Rev. 38(7), 1999 (2009).

    Article  CAS  Google Scholar 

  6. A. Paleologou, H. Marakas, N.P. Xekoukoulotakis, A. Moya, Y. Vergara, N. Kalogerakis, P. Gikas, and D. Mantzavinos: Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation. Catal. Today 129(1–2), 136 (2007).

    Article  CAS  Google Scholar 

  7. Z.Y. Liu, H.W. Bai, and D.R. Sun: Facile fabrication of hierarchical porous TiO2 hollow microspheres with high photocatalytic activity for water purification. Appl. Catal., B 104(3–4), 234 (2011).

    Article  CAS  Google Scholar 

  8. V. Puddu, H. Choi, D.D. Dionysiou, and G.L. Puma: TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl. Catal., B 94(3–4), 211 (2010).

    Article  CAS  Google Scholar 

  9. G. Palmisano, V. Augugliaro, M. Pagliaro, and L. Palmisano: Photocatalysis: A promising route for 21st century organic chemistry. Chem. Commun. 38(48), 3425 (2007).

    Article  Google Scholar 

  10. M. Ni, M.K.H Leung, D.Y.C Leung, and K. Sumathy: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 11(3), 401 (2007).

    Article  CAS  Google Scholar 

  11. Y. Cui, H. Du, and L.S. Wen: Enhancement of photoelectrocatalytic properties of stainless-steel/TiO2 electrode by applying mid-frequency electric field. Environ. Chem. Lett. 7(4), 321 (2009).

    Article  CAS  Google Scholar 

  12. P. Evans, M.E. Pemble, and D.W. Sheel: Precursor-directed control of crystalline type in atmospheric pressure CVD growth of TiO2 on stainless steel. Chem. Mater. 18(24), 5750 (2006).

    Article  CAS  Google Scholar 

  13. C. Giolli, F. Borgioli, A. Credi, A. Di Fabio, A. Fossati, M.M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi: Characterization of TiO2 coatings prepared by a modified electric arc physical vapor deposition system. Surf. Coat. Technol. 202(1), 13 (2007).

    Article  CAS  Google Scholar 

  14. Z.H. Li, N.X. Qiu, and G.M. Yang: Effects of synthesis parameters on the microstructure and phase structure of porous 316L stainless steel supported TiO2 membranes. J. Membr. Sci. 326(2), 533 (2009).

    Article  CAS  Google Scholar 

  15. M.N. Chong, B. Jin, C.W.K Chow, and C. Saint: Recent developments in photocatalytic water treatment technology: A review. Water Res. 44(10), 2997 (2010).

    Article  CAS  Google Scholar 

  16. T. Tachikawa, M. Fujitsuka, and T. Majima: Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts. J. Phys. Chem. C. 111(14), 5259 (2007).

    Article  CAS  Google Scholar 

  17. X.M. Zhou, H.C. Yang, C.X. Wang, X.B. Mao, Y.S. Wang, Y.L. Yang, and G. Liu: Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles. J. Phys. Chem. C. 114(40), 17051(2010).

    Article  CAS  Google Scholar 

  18. G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, and C.A. Grimes: Vertically oriented Ti−Fe−O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7(8), 2356 (2007).

    Article  CAS  Google Scholar 

  19. G.K. Pradhan and K.M. Parida: Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods. ACS Appl. Mater. Interfaces 3(2), 317(2011).

    Article  CAS  Google Scholar 

  20. N.T. Hahn, H.C. Ye, D.W. Flaherty, A.J. Bard, and C.B. Mullins: Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano. 4(4), 1977 (2010).

    Article  CAS  Google Scholar 

  21. Z.H. Zhang, M.F. Hossain, T. Miyazaki, and T. Takahashi: Gas phase photocatalytic activity of ultrathin Pt layer coated on α-Fe2O3 films under visible light illumination. Environ. Sci. Technol. 44(12), 4741 (2010).

    Article  CAS  Google Scholar 

  22. S.K. Mohapatra, S.E. John, S. Banerjee, and M. Misra: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21(14), 3048 (2009).

    Article  CAS  Google Scholar 

  23. Z.H. Zhang, M.F. Hossain, and T. Takahashi: Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal., B 95(3–4), 423 (2010).

    Article  CAS  Google Scholar 

  24. Z.X. Su and W.Z. Zhou: Pore diameter control in anodic titanium and aluminum oxides. J. Mater. Chem. 21(2), 357 (2011).

    Article  CAS  Google Scholar 

  25. F. Schmidt-Stein, S. Thiemann, S. Berger, R. Hahn, and P. Schmuki: Mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Mater. 58(19), 6317 (2010).

    Article  CAS  Google Scholar 

  26. H. Habazaki, Y. Konno, Y. Aoki, P. Skeldon, and G.E. Thompson: Galvanostatic growth of nanoporous anodic films on iron in ammonium fluoride−ethylene glycol electrolytes with different water contents. J. Phys. Chem. C. 114(44), 18853 (2010).

    Article  CAS  Google Scholar 

  27. M. Diaz, P. Sevilla, A.M. Galan, G. Escolar, E. Engel, and F.J. Gil: Evaluation of ion release, cytotoxicity, and platelet adhesion of electrochemical anodized 316L stainless steel cardiovascular stents. J. Biomed. Mater. Res. Part B 87(2), 555 (2008).

    Article  CAS  Google Scholar 

  28. L.V. Taveira, M.F. Montemor, M.D. Belo, M.G. Ferreira, and L.F.P Dick: Influence of incorporated Mo and Nb on the Mott–Schottky behavior of anodic films formed on AISI 304L. Corros. Sci. 52(9), 2813 (2010).

    Article  CAS  Google Scholar 

  29. R.G. Nair, A.M. Tripathi, and S.K. Samdarshi: Photocatalytic activity of predominantly rutile mixed phase Ag/TiV oxide nanoparticles under visible light irradiation. Energy 36(5), 3342 (2011).

    Article  CAS  Google Scholar 

  30. Y.Q. Liang, Z.D. Cui, S.L. Zhu, and X.J. Yang: Formation and characterization of iron oxide nanoparticles loaded on self-organized TiO2 nanotubes. Electrochim. Acta 55(18), 5245 (2010).

    Article  CAS  Google Scholar 

  31. X. Qu, N. Kobayashi, and T. Komatsu: Solid nanotubes comprising α-Fe2O3 nanoparticles prepared from ferritin protein. ACS Nano 4(3), 1732 (2010).

    Article  CAS  Google Scholar 

  32. B. Elsener, D. Addari, S. Coray, and A. Rossi: Nickel-free manganese bearing stainless steel in alkaline media—electrochemistry and surface chemistry. Electrochim. Acta 56(12), 4489 (2011).

    Article  CAS  Google Scholar 

  33. J. Doff, P.E. Archibong, G. Jones, E.V. Korolev, P. Skeldon, and G.E. Thompson: Formation and composition of nanoporous films on 316L stainless steel by pulsed polarization. Electrochim. Acta 56(9), 3225 (2011).

    Article  CAS  Google Scholar 

  34. M.G.S Ferreira, N.E. Hakiki, G. Goodlet, S. Faty, A.M.P Simoes, and M.D. Belo: Influence of the temperature of film formation on the electronic structure of oxide films formed on 304stainless steel. Electrochim. Acta 46(24–25), 3767 (2001).

    Article  CAS  Google Scholar 

  35. N.E. Hakiki: Influence of surface roughness on the semiconducting properties of oxide films formed on 304 stainless steel. J. Appl. Electrochem. 38(5), 679 (2008).

    Article  CAS  Google Scholar 

  36. C.L. McBee and J. Kruger: Nature of passive films on iron-chromium alloys. Electrochim. Acta 17(8), 1337 (1972).

    Article  CAS  Google Scholar 

  37. G. Xiong, A.G. Joly, G.P. Holtom, C.M. Wang, D.E. McCready, K.M. Beck, and W.P. Hess: Excited carrier dynamics of α-Cr2O3/α-Fe2O3 core-shell nanostructures. J. Phys. Chem. B 110(34), 16937 (2006).

    Article  CAS  Google Scholar 

  38. L.S. Chen and G.L. Lu: Study on the effects of Cr2O3 on the reduction behavior of γ-Fe2O3. J. Mater. Sci. 34(17), 4193 (1999).

    Article  CAS  Google Scholar 

  39. S.A. Chambers, J.R. Williams, M.A. Henderson, A.G. Joly, M. Varela, and S.J. Pennycook: Structure, band offsets and photochemistry at epitaxial α-Cr2O3/α-Fe2O3 heterojunctions. Surf. Sci. 587(3), L197 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.50771075, No.51171133) and the Program for New Century Excellent Talents in University (No. NCET-07-0650). And we would like to thank Mr. X.M. Zhang for the technical support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, W., Ni, H., Chen, R. et al. Formation of nanopore arrays on stainless steel surface by anodization for visible-light photocatalytic degradation of organic pollutants. Journal of Materials Research 27, 2417–2424 (2012). https://doi.org/10.1557/jmr.2012.200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.200

Navigation