Abstract
There is high scientific and technological interest to develop photocatalytic coatings on stainless steels surface to remove fouling under light radiation. In this study, a novel method is described to prepare photocleanable stainless steel by anodization to form aligned nanopore arrays (NPAs) on the surface in ethylene glycol containing perchloric acid. Perchloric acid concentration, applied voltage and anodization time of anodization process were investigated. The NPAs are mainly composed of iron (III) oxide and chromium (III) oxide. This photocleanable stainless steel has remarkable visible-light photocatalytic activities, which show potential applications particularly for outdoor purpose. Moreover, the stainless steel surface remains highly polished and exhibits good corrosion resistance after anodization.
Similar content being viewed by others
References
R. Rosmaninho, O. Santos, T. Nylander, M. Paulsson, M. Beuf, T. Benezech, S. Yiantsios, N. Andritsos, A. Karabelas, G. Rizzo, H. Muller-Steinhagen, and L.F. Melo: Modified stainless steel surfaces targeted to reduce fouling-evaluation of fouling by milk components. J. Food Eng. 80(4), 1176 (2007).
M. Ignatova, S. Voccia, S. Gabriel, B. Gilbert, D. Cossement, R. Jerome, and C. Jerome: Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: Synthesis, characterization, and properties. Langmuir 25(2), 891 (2009).
J. Tavares, A. Shahryari, J. Harvey, S. Coulombe, and S. Omanovic: Corrosion behavior and fibrinogen adsorptive interaction of SS 316L surfaces covered with ethylene glycol plasma polymer-coated Ti nanoparticles. Surf. Coat. Technol. 203(16), 2278 (2009).
A. Fujishima, X.T. Zhang, and D.A. Tryk: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515 (2008).
D. Ravelli, D. Dondi, M. Fagnoni, and A. Albini: Photocatalysis. A multifaceted concept for green chemistry. Chem. Soc. Rev. 38(7), 1999 (2009).
A. Paleologou, H. Marakas, N.P. Xekoukoulotakis, A. Moya, Y. Vergara, N. Kalogerakis, P. Gikas, and D. Mantzavinos: Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation. Catal. Today 129(1–2), 136 (2007).
Z.Y. Liu, H.W. Bai, and D.R. Sun: Facile fabrication of hierarchical porous TiO2 hollow microspheres with high photocatalytic activity for water purification. Appl. Catal., B 104(3–4), 234 (2011).
V. Puddu, H. Choi, D.D. Dionysiou, and G.L. Puma: TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl. Catal., B 94(3–4), 211 (2010).
G. Palmisano, V. Augugliaro, M. Pagliaro, and L. Palmisano: Photocatalysis: A promising route for 21st century organic chemistry. Chem. Commun. 38(48), 3425 (2007).
M. Ni, M.K.H Leung, D.Y.C Leung, and K. Sumathy: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 11(3), 401 (2007).
Y. Cui, H. Du, and L.S. Wen: Enhancement of photoelectrocatalytic properties of stainless-steel/TiO2 electrode by applying mid-frequency electric field. Environ. Chem. Lett. 7(4), 321 (2009).
P. Evans, M.E. Pemble, and D.W. Sheel: Precursor-directed control of crystalline type in atmospheric pressure CVD growth of TiO2 on stainless steel. Chem. Mater. 18(24), 5750 (2006).
C. Giolli, F. Borgioli, A. Credi, A. Di Fabio, A. Fossati, M.M. Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio, A. Tolstoguzov, A. Zoppi, and U. Bardi: Characterization of TiO2 coatings prepared by a modified electric arc physical vapor deposition system. Surf. Coat. Technol. 202(1), 13 (2007).
Z.H. Li, N.X. Qiu, and G.M. Yang: Effects of synthesis parameters on the microstructure and phase structure of porous 316L stainless steel supported TiO2 membranes. J. Membr. Sci. 326(2), 533 (2009).
M.N. Chong, B. Jin, C.W.K Chow, and C. Saint: Recent developments in photocatalytic water treatment technology: A review. Water Res. 44(10), 2997 (2010).
T. Tachikawa, M. Fujitsuka, and T. Majima: Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts. J. Phys. Chem. C. 111(14), 5259 (2007).
X.M. Zhou, H.C. Yang, C.X. Wang, X.B. Mao, Y.S. Wang, Y.L. Yang, and G. Liu: Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles. J. Phys. Chem. C. 114(40), 17051(2010).
G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, and C.A. Grimes: Vertically oriented Ti−Fe−O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7(8), 2356 (2007).
G.K. Pradhan and K.M. Parida: Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods. ACS Appl. Mater. Interfaces 3(2), 317(2011).
N.T. Hahn, H.C. Ye, D.W. Flaherty, A.J. Bard, and C.B. Mullins: Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano. 4(4), 1977 (2010).
Z.H. Zhang, M.F. Hossain, T. Miyazaki, and T. Takahashi: Gas phase photocatalytic activity of ultrathin Pt layer coated on α-Fe2O3 films under visible light illumination. Environ. Sci. Technol. 44(12), 4741 (2010).
S.K. Mohapatra, S.E. John, S. Banerjee, and M. Misra: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21(14), 3048 (2009).
Z.H. Zhang, M.F. Hossain, and T. Takahashi: Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal., B 95(3–4), 423 (2010).
Z.X. Su and W.Z. Zhou: Pore diameter control in anodic titanium and aluminum oxides. J. Mater. Chem. 21(2), 357 (2011).
F. Schmidt-Stein, S. Thiemann, S. Berger, R. Hahn, and P. Schmuki: Mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Mater. 58(19), 6317 (2010).
H. Habazaki, Y. Konno, Y. Aoki, P. Skeldon, and G.E. Thompson: Galvanostatic growth of nanoporous anodic films on iron in ammonium fluoride−ethylene glycol electrolytes with different water contents. J. Phys. Chem. C. 114(44), 18853 (2010).
M. Diaz, P. Sevilla, A.M. Galan, G. Escolar, E. Engel, and F.J. Gil: Evaluation of ion release, cytotoxicity, and platelet adhesion of electrochemical anodized 316L stainless steel cardiovascular stents. J. Biomed. Mater. Res. Part B 87(2), 555 (2008).
L.V. Taveira, M.F. Montemor, M.D. Belo, M.G. Ferreira, and L.F.P Dick: Influence of incorporated Mo and Nb on the Mott–Schottky behavior of anodic films formed on AISI 304L. Corros. Sci. 52(9), 2813 (2010).
R.G. Nair, A.M. Tripathi, and S.K. Samdarshi: Photocatalytic activity of predominantly rutile mixed phase Ag/TiV oxide nanoparticles under visible light irradiation. Energy 36(5), 3342 (2011).
Y.Q. Liang, Z.D. Cui, S.L. Zhu, and X.J. Yang: Formation and characterization of iron oxide nanoparticles loaded on self-organized TiO2 nanotubes. Electrochim. Acta 55(18), 5245 (2010).
X. Qu, N. Kobayashi, and T. Komatsu: Solid nanotubes comprising α-Fe2O3 nanoparticles prepared from ferritin protein. ACS Nano 4(3), 1732 (2010).
B. Elsener, D. Addari, S. Coray, and A. Rossi: Nickel-free manganese bearing stainless steel in alkaline media—electrochemistry and surface chemistry. Electrochim. Acta 56(12), 4489 (2011).
J. Doff, P.E. Archibong, G. Jones, E.V. Korolev, P. Skeldon, and G.E. Thompson: Formation and composition of nanoporous films on 316L stainless steel by pulsed polarization. Electrochim. Acta 56(9), 3225 (2011).
M.G.S Ferreira, N.E. Hakiki, G. Goodlet, S. Faty, A.M.P Simoes, and M.D. Belo: Influence of the temperature of film formation on the electronic structure of oxide films formed on 304stainless steel. Electrochim. Acta 46(24–25), 3767 (2001).
N.E. Hakiki: Influence of surface roughness on the semiconducting properties of oxide films formed on 304 stainless steel. J. Appl. Electrochem. 38(5), 679 (2008).
C.L. McBee and J. Kruger: Nature of passive films on iron-chromium alloys. Electrochim. Acta 17(8), 1337 (1972).
G. Xiong, A.G. Joly, G.P. Holtom, C.M. Wang, D.E. McCready, K.M. Beck, and W.P. Hess: Excited carrier dynamics of α-Cr2O3/α-Fe2O3 core-shell nanostructures. J. Phys. Chem. B 110(34), 16937 (2006).
L.S. Chen and G.L. Lu: Study on the effects of Cr2O3 on the reduction behavior of γ-Fe2O3. J. Mater. Sci. 34(17), 4193 (1999).
S.A. Chambers, J.R. Williams, M.A. Henderson, A.G. Joly, M. Varela, and S.J. Pennycook: Structure, band offsets and photochemistry at epitaxial α-Cr2O3/α-Fe2O3 heterojunctions. Surf. Sci. 587(3), L197 (2005).
Acknowledgments
This work was supported by National Natural Science Foundation of China (No.50771075, No.51171133) and the Program for New Century Excellent Talents in University (No. NCET-07-0650). And we would like to thank Mr. X.M. Zhang for the technical support during this study.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhan, W., Ni, H., Chen, R. et al. Formation of nanopore arrays on stainless steel surface by anodization for visible-light photocatalytic degradation of organic pollutants. Journal of Materials Research 27, 2417–2424 (2012). https://doi.org/10.1557/jmr.2012.200
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.200