Skip to main content
Log in

Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-density cobalt (Co) nanowires (NWs) were fabricated using porous anodized aluminum oxide as a template. Measurement results show a high magnetic performance for NWs with a coercivity of about 1750 Oe and strong magnetic anisotropy with an easy axis parallel to the NW direction. We have investigated the effect of alternating current (AC) electrodeposition frequency on the magnetic properties of NW samples. We show that understanding the effect of barrier layer is critical for controlling the rate of NW electrodeposition. A circuit model is proposed that accurately describes the role of the barrier and interfacial layers during deposition. Results obtained by simulation of the circuit show an excellent agreement with experimental results for different frequencies and voltages. It is shown that the amount of electrodeposited material can be estimated based on the difference between the anodic and cathodic half cycles in the electrodeposited current. Use of higher frequency leads to more symmetrical half cycles and smaller electrodeposited material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Table I
Table II
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S.F. Fischer, and H. Kronmuller: Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys. Lett. 79, 1360 (2001).

    Article  CAS  Google Scholar 

  2. S. Dubois, J.M. Beuken, L. Piraux, J.L. Duvail, A. Fert, J.M. George, and J.L. Maurice: Perpendicular giant magnetoresistance of NiFe/Cu and Co/Cu multilayered nanowires. J. Magn. Magn. Mater. 165, 30 (1997).

    Article  CAS  Google Scholar 

  3. A. Blondel, J.P. Meier, B. Doudin, and J.P. Ansermet: Giant magnetoresistance of nanowires of multilayers. Appl. Phys. Lett. 65, 3019 (1994).

    Article  CAS  Google Scholar 

  4. O.K. Varghese, D. Gong, W.R. Dreschel, K.G. Ong, and C.A. Grimes: Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors. Sens. Actuators, B 94, 27 (2003).

    Article  CAS  Google Scholar 

  5. S. Chakraborty, K. Hara, and P.T. Lai: New microhumidity field-effect transistor sensor in ppm(v) level. Rev. Sci. Instrum. 70, 1565 (1999).

    Article  CAS  Google Scholar 

  6. H. Xu, D.H. Qin, Z. Yang, and H.L. Li: Fabrication and characterization of highly ordered zirconia nanowire arrays by sol-gel template method. Mater. Chem. Phys. 80, 524 (2003).

    Article  CAS  Google Scholar 

  7. F. Matsumoto, K. Nishio, and H. Masuda: Flow-through-type DNA array based on ideally ordered anodic porous alumina substrate. Adv. Mater. 16, 23 (2004).

    Article  CAS  Google Scholar 

  8. S. Ono, M. Saito, M. Ishiguro, and H. Asoh: Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 151, B473 (2004).

    Article  CAS  Google Scholar 

  9. S.Z. Chu, S. Inoue, K. Wada, S. Hishita, and K. Kurashima: Self-organized nanoporous anodic titania films and ordered titania nanodots/nanorods on glass. Adv. Funct. Mater. 15, 1343 (2005).

    Article  CAS  Google Scholar 

  10. J.R. Lim, J.F. Whitacre, J.P. Fleurial, C.K. Huang, M.A. Ryan, and N.V. Myung: Fabrication method for thermoelectric nanodevices. Adv. Mater. 17, 1488 (2005).

    Article  CAS  Google Scholar 

  11. Y. Peng, D.H. Qin, R.J. Zhou, and H.L. Li: Bismuth quantum-wires arrays fabricated by electrodeposition in nanoporous anodic aluminum oxide and its structural properties. Mater. Sci. Eng., B 77, 246 (2000).

    Article  Google Scholar 

  12. M.J. Zheng, L.D. Zhang, X.Y. Zhang, J. Zhang, and G.H. Li: Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes. Chem. Phys. Lett. 334, 298 (2001).

    Article  CAS  Google Scholar 

  13. J. Choi, Y. Luo, R.B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gosele: Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 94, 4757 (2003).

    Article  CAS  Google Scholar 

  14. C.R. Martin: Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).

    Article  CAS  Google Scholar 

  15. S. Shingubara: Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5, 17 (2003).

    Article  CAS  Google Scholar 

  16. J.C. Hulteen and C.R. Martin: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).

    Article  CAS  Google Scholar 

  17. H. Yoon, D.C. Deshpande, V. Ramachandran, and V.K. Varadan: Aligned nanowire growth using lithography-assisted bonding of a polycarbonate template for neural probe electrodes. Nanotechnology 19, 025304 (2008).

    Article  Google Scholar 

  18. C. Schonenberger, B.M.I vanderZande, L.G.J Fokkink, M. Henny, C. Schmid, M. Kruger, A. Bachtold, R. Huber, H. Birk, and U. Staufer: Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology. J. Phys. Chem. B 101, 5497 (1997).

    Article  Google Scholar 

  19. H. Masuda, F. Hasegwa, and S. Ono: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127 (1997).

    Article  CAS  Google Scholar 

  20. H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura: Photonic crystal using anodic porous alumina. Jpn. J. Appl. Phys., Part 2 38, L1403 (1999).

    Article  Google Scholar 

  21. H. Masuda and K. Fukuda: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).

    Article  CAS  Google Scholar 

  22. S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, and M.J. Natan: Submicrometer metallic barcodes. Science 294, 137 (2001).

    Article  CAS  Google Scholar 

  23. M.L. Tian, J.U. Wang, J. Kurtz, T.E. Mallouk, and M.H.W Chan: Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919 (2003).

    Article  CAS  Google Scholar 

  24. F. Hebard, S.A. Ajuria, and R.H. Eick: Interface contribution to the capacitance of thin-film Al-Al2O3-Al trilayer structures. Appl. Phys. Lett. 51, 1349 (1987).

    Article  CAS  Google Scholar 

  25. D.A. Brevnov, G.V. Rama Rao, G.P. López, and P.B. Atanassov: Dynamics and temperature dependence of etching processes of porous and barrier aluminum oxide layers. Electrochim. Acta 49, 2487 (2004).

    Article  CAS  Google Scholar 

  26. G. Sharma, M.V. Pishko, and C.A. Grimes: Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: Effect of barrier layer. J. Mater. Sci. 42, 4738 (2007).

    Article  CAS  Google Scholar 

  27. K. Shimizu, K. Kobayashi, G.E. Thompson, and G.C. Wood: Development of porous anodic films on aluminum. Philos. Mag. A 66, 643 (1992).

    Article  CAS  Google Scholar 

  28. O. Jessensky, F. Muller, and U. Giosele: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 (1998).

    Article  CAS  Google Scholar 

  29. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura: Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997).

    Article  CAS  Google Scholar 

  30. J.P. O’Sullivan and G.C. Wood: The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. London, Ser. A 317, 511 (1970).

    Article  Google Scholar 

  31. D.J. Sellmyer, M. Zheng, and R. Skomski: Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter 13, R433 (2001).

    Article  CAS  Google Scholar 

  32. G.E. Thompson and G.C. Wood: Anodic films on aluminum. in Corrosion: Aqueous Processes and Passive Films, J.C. Scully, ed. (Academic Press, New York, NY, 1983).

  33. I. Vrublevsky, V. Parkoun, V. Sokol, and J. Schreckenbach: Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique. Appl. Surf. Sci. 236, 270 (2004).

    Article  CAS  Google Scholar 

  34. I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, and G. Marx: The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime. Appl. Surf. Sci. 222, 215 (2004).

    Article  CAS  Google Scholar 

  35. V.P. Parkhutik and V.I. Shershulsky: Theoretical modeling of porous oxide growth on aluminum. J. Phys. D: Appl. Phys. 25, 1258 (1992).

    Article  CAS  Google Scholar 

  36. A.J. Yin, J. Li, W. Jian, A.J. Bennett, and J.M. Xu: Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 79, 1039 (2001).

    Article  CAS  Google Scholar 

  37. M. Almasi Kashi, A. Ramazani, and A. Khayyatian: The influence of the ac electrodeposition conditions on the magnetic properties and microstructure of Co nanowire arrays. J. Phys. D: Appl. Phys. 39, 4130 (2006).

    Article  Google Scholar 

  38. A. Saedi and M. Ghorbani: Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template. Mater. Chem. Phys. 91, 417 (2005).

    Article  CAS  Google Scholar 

  39. M. Almasi Kashi, A. Ramazani, M. Ghaffari, and V.B. Isfahani: The effect of growth rate enhancement on the magnetic properties and microstructures of ac electrodeposited Co nanowires using nonsymmetric reductive/oxidative voltage. J. Cryst. Growth 311, 4581 (2009).

    Article  CAS  Google Scholar 

  40. E.C. Stoner and E.P. Wohlfarth: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. London, Ser. A 240, 599–642 (1948).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Soltanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najafi, M., Soltanian, S., Danyali, H. et al. Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer. Journal of Materials Research 27, 2382–2390 (2012). https://doi.org/10.1557/jmr.2012.198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.198

Navigation