Skip to main content
Log in

Side-chain degradation of perfluorosulfonic acid membranes: An ab initio study

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Chemical degradation of the side-chain of perfluorosulfonic acid (PFSA) membranes by hydroxyl radicals (•OH) is examined with electronic structure calculations. The energetics associated with homolytic bond cleavage and for the sequence of reactions involved in the degradation was determined. Results show that the degradation of side-chain begins with the cleavage of the C–S bond. The sequence of reactions of the side-chain with dOH indicates scission of the backbone yielding reactive end-groups. The kinetics of the C–S bond cleavage was studied via: (i) reaction of anionic fragment with a •OH; and (ii) decomposition of fragment radical. The activation energy for the second pathway was calculated to be;11 kcal/mol lower requiring a change in symmetry of the molecular geometry of the sulfonate group from trigonal pyramidal to trigonal planar. This suggests that although the C–S bond may be the weakest in the side chain of a PFSA ionomer, its cleavage is kinetically hindered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.I. Kimijima, and N. Iwashita: Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107(10), 3904 (2007).

    CAS  Google Scholar 

  2. M. Granovskii, I. Dincer, and M.A. Rosen: Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int. J. Hydrogen Energy 31(3), 337 (2006).

    CAS  Google Scholar 

  3. F.N. Buchi, M. Inaba, and T.J. Schmidt: Polymer Electolyte Fuel Cell Durability (Springer, New York, NY, 2009).

    Google Scholar 

  4. J. Wu, X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, and W. Merida: A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 184(1), 104 (2008).

    CAS  Google Scholar 

  5. A. Collier, H. Wang, X. Zi Yuan, J. Zhang, and D.P. Wilkinson: Degradation of polymer electrolyte membranes. Int. J. Hydrogen Energy 31(13), 1838 (2006).

    CAS  Google Scholar 

  6. V.A. Sethuraman, J.W. Weidner, A.T. Haug, and L.V. Protsailo: Durability of perfluorosulfonic acid and hydrocarbon membranes: Effect of humidity and temperature. J. Electrochem. Soc. 155(2), B119 (2008).

    CAS  Google Scholar 

  7. M. Inaba, T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka, and Z. Ogumi: Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim. Acta 51(26), 5746 (2006).

    CAS  Google Scholar 

  8. S.D. Knights, K.M. Colbow, J. St-Pierre, and D.P. Wilkinson: Aging mechanisms and lifetime of PEFC and DMFC. J. Power Sources 127(1–2), 127 (2004).

    CAS  Google Scholar 

  9. Y.A. Yuji Shibahara, Y. Izumi, S. Nishijima, Y. Honda, N. Kimura, S. Tagawa, and G. Isoyama: Analysis of thermal degradation process of Nafion-117 with age-momentum correlation method. J. Polym. Sci., Part B: Polym. Phys. 46(1), 1 (2008).

    Google Scholar 

  10. E. Endoh, S. Terazono, H. Widjaja, and Y. Takimoto: Degradation study of MEA for PEMFCs under low humidity conditions. Electrochem. Solid-State Lett. 7(7), A209 (2004).

    CAS  Google Scholar 

  11. C. Chen, G. Levitin, D.W. Hess, and T.F. Fuller: XPS investigation of Nafion® membrane degradation. J. Power Sources 169(2), 288 (2007).

    CAS  Google Scholar 

  12. A. Bosnjakovic, M.K. Kadirov, and S. Schlick: Using ESR spectroscopy to study radical intermediates in proton-exchange membranes exposed to oxygen radicals. Res. Chem. Intermed. 33, 677 (2007).

    CAS  Google Scholar 

  13. A. Bosnjakovic and S. Schlick: Nafion perfluorinated membranes treated in fenton media: Radical species detected by ESR spectroscopy. J. Phys. Chem. B 108(14), 4332 (2004).

    CAS  Google Scholar 

  14. M. Danilczuk, A. Bosnjakovic, M.K. Kadirov, and S. Schlick: Direct ESR and spin trapping methods for the detection and identification of radical fragments in Nafion membranes and model compounds exposed to oxygen radicals. J. Power Sources 172(1), 78 (2007).

    CAS  Google Scholar 

  15. T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, Y. Iriyama, T. Abe, and Z. Ogumi: Durability of perfluorinated ionomer membrane against hydrogen peroxide. J. Power Sources 158(2), 1222 (2006).

    CAS  Google Scholar 

  16. A. Pozio, R.F. Silva, M. De Francesco, and L. Giorgi: Nafion degradation in PEFCs from end plate iron contamination. Electrochim. Acta 48(11), 1543 (2003).

    CAS  Google Scholar 

  17. T. Okada, Y. Ayato, H. Satou, M. Yuasa, and I. Sekine: The effect of impurity cations on the oxygen reduction kinetics at platinum electrodes covered with perfluorinated ionomer J. Phys. Chem. B 105(29), 6980 (2001).

    CAS  Google Scholar 

  18. R. Bauer, G. Waldner, H. Fallmann, S. Hager, M. Klare, T. Krutzler, S. Malato, and P. Maletzky: The photo-Fenton reaction and the TiO2/UV process for waste water treatment - novel developments. Catal. Today 53(1), 131 (1999).

    CAS  Google Scholar 

  19. X. Cheng, J.L. Zhang, Y.H. Tang, C.J. Song, J. Shen, D.T. Song, and J.J. Zhang: Hydrogen crossover in high-temperature PEM fuel cells. J. Power Sources 167(1), 25 (2007).

    CAS  Google Scholar 

  20. V.O. Mittal, H.R. Kunz, and J.M. Fenton: Membrane degradation mechanisms in PEMFCs. J. Electrochem. Soc. 154(7), B652 (2007).

    CAS  Google Scholar 

  21. M. Aoki, H. Uchida, and M. Watanabe: Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells. Electrochem. Commun. 8(9), 1509 (2006).

    CAS  Google Scholar 

  22. J.R. Yu, T. Matsuura, Y. Yoshikawa, M.N. Islam, and M. Hori: In situ analysis of performance degradation of a PEMFC under nonsaturated humidification. Electrochem. Solid-State Lett. 8(3), A156 (2005).

    CAS  Google Scholar 

  23. V.O. Mittal, H.R. Kunz, and J.M. Fenton: Effect of catalyst properties on membrane degradation rate and the underlying degradation mechanism in PEMFCs. J. Electrochem. Soc. 153(9), A1755 (2006).

    CAS  Google Scholar 

  24. M. Aoki, H. Uchida, and M. Watanabe: Novel evaluation method for degradation rate of polymer electrolytes in fuel cells. Electrochem. Commun. 7(12), 1434 (2005).

    CAS  Google Scholar 

  25. A.B. LaConti, M. Hamdan, and R.C. McDonald: Handbook of Fuel Cells: Fundamentals, Technology and Applications (John Wiley & Sons, New York, 2003).

    Google Scholar 

  26. N.E. Cipollini: Chemical aspects of membrane degradation. ECS Trans. 11(1), 1071 (2007).

    CAS  Google Scholar 

  27. K. Teranishi, K. Kawata, S. Tsushima, and S. Hirai: Degradation mechanism of PEMFC under open circuit operation. Electrochem. Solid-State Lett. 9(10), A475 (2006).

    CAS  Google Scholar 

  28. W. Liu and D. Zuckerbrod: In situ detection of hydrogen peroxide in PEM fuel cells. J. Electrochem. Soc. 152(6), A1165 (2005).

    CAS  Google Scholar 

  29. W.E. Delaney and W. Liu: Use of FTIR to analyze ex situ and in situ degradation of perfluorinated fuel cell ionomers. ECS Trans. 11(1), 1093 (2007).

    CAS  Google Scholar 

  30. J.L. Qiao, M. Saito, K. Hayamizu, and T. Okada: Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2. J. Electrochem. Soc. 153(6), A967 (2006).

    CAS  Google Scholar 

  31. S. Mitov, A. Panchenko, and E. Roduner: Comparative DFT study of nonfluorinated and perfluorinated alkyl and alkyl-peroxy radicals. Chem. Phys. Lett. 402(4–6), 485 (2005).

    CAS  Google Scholar 

  32. D.E. Curtin, R.D. Lousenberg, T.J. Henry, P.C. Tangeman, and M.E. Tisack: Advanced materials for improved PEMFC performance and life. J. Power Sources 131, 41 (2004).

    CAS  Google Scholar 

  33. S. Hommura, K. Kawahara, and T. Shimodaira: Chemical degradation of perfluorinated sulfonic acid membranes. Polym. Prep. Jpn. 54, 4517–4518 (2005).

    Google Scholar 

  34. S.J. Hamrock and M.A. Yandrasits: Proton exchange membranes for fuel cell applications. Polym. Rev. 46(3), 219 (2006).

    CAS  Google Scholar 

  35. L. Ghassemadeh, M. Marrony, R. Barrera, K.D. Kreuer, J. Maier, and K. Muller: Chemical degradation of proton-conducting perflurosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy. J. Power Sources 186(2), 334 (2009).

    Google Scholar 

  36. X. Fang, P.K. Shen, S. Song, V. Stergiopoulos, and P. Tsiakaras: Degradation of perfluorinated sulfonic acid films: An in situ infrared spectroelectrochemical study. Polym. Degrad. Stab. 94(10), 1707 (2009).

    CAS  Google Scholar 

  37. L. Ghassemzadeh, K.D. Kreuer, J. Maier, and K. Mueller: Evaluating chemical degradation of proton-conducting perfluorosulfonic acid ionomers in a Fenton test by solid-state 19F NMR spectroscopy. J. Power Sources 196(5), 2490 (2011).

    CAS  Google Scholar 

  38. T. Tokumasu, I. Ogawa, M. Koyama, T. Ishimoto, and A. Miyamoto: A DFT study of bond dissociation trends of perfluorosulfonic acid membrane. J. Electrochem. Soc. 158(2), B175 (2010).

    Google Scholar 

  39. L. Ghassemzadeh, K-D. Kreuer, J. Maier, and K. Muller: Chemical degradation of Nafion membranes under mimic fuel cell conditions as investigated by solid-state NMR spectroscopy. J. Phys. Chem. C 114(34), 14635 (2010).

    CAS  Google Scholar 

  40. M.K. Kadirov, A. Bosnjakovic, and S. Schlick: Membrane-derived fluorinated radicals detected by electron spin resonance in UV-irradiated Nafion and Dow ionomers: Effect of counterions and H2O2. J. Phys. Chem. B 109(16), 7664 (2005).

    CAS  Google Scholar 

  41. A.H. Carlsson, L. Jorissen, and W. Tillmetz: PFSA Membrane Degradation Mechanism: Fuel Cell Degradationversus. Ex-Situ Methods (Zentrum für Sonnenenergie und Wasserstoff-Forschung, Ulm, Germany, 2009).

    Google Scholar 

  42. F.D. Coms: The chemistry of fuel cell membrane chemical degradation. ECS Trans. 16(2), 235 (2008).

    CAS  Google Scholar 

  43. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople: Gaussian 03 (Gaussian Inc., Wallingford, CT, 2004).

    Google Scholar 

  44. A.D. Becke: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648 (1993).

    CAS  Google Scholar 

  45. C. Lee, W. Yang, and R.G. Parr: Development of the Colle Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter 37(2), 785 (1988).

    CAS  Google Scholar 

  46. S.H. Vosko, L. Wilk, and M. Nusair: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58(8), 1200 (1980).

    CAS  Google Scholar 

  47. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, and M.J. Frisch: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623 (1994).

    CAS  Google Scholar 

  48. C.Y. Peng and H.B. Schlegel: Combining synchronous transit and quasi-Newton methods to find transition states. Isr. J. Chem. 33(4), 449 (1993).

    CAS  Google Scholar 

  49. C. Gonzalez and H.B. Schlegel: An improved algorithm for reaction-path following. J. Chem. Phys. 90, 2154 (1989).

    CAS  Google Scholar 

  50. C. Gonzalez and H.B. Schlegel: Reaction-path following in mass-weighted internal coordinates. J. Phys. Chem. 94(14), 5523 (1990).

    CAS  Google Scholar 

  51. C. Wang and S.J. Paddison: Proton transfer in functionalized phosphonic acid molecules. Phys. Chem. Chem. Phys. 12(4), 970 (2010).

    CAS  Google Scholar 

  52. M. Eikerling, S.J. Paddison, and T.A. Zawodzinski: Molecular orbital calculations of proton dissociation and hydration of various acidic moieties for fuel cell polymers. J. New Mater. Electrochem. Syst. 5(1), 15 (2002).

    CAS  Google Scholar 

  53. S.J. Paddison: Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Annu. Rev. Mater. Res. 33, 289 (2003).

    CAS  Google Scholar 

  54. S.J. Paddison and J.A. Elliott: Molecular modeling of the short-side-chain perfluorosulfonic acid membrane. J. Phys. Chem. A 109(33), 7583 (2005).

    CAS  Google Scholar 

  55. J.A. Elliott and S.J. Paddison: Modeling of morphology and proton transport in PFSA membranes. Phys. Chem. Chem. Phys. 9(21), 2602 (2007).

    CAS  Google Scholar 

  56. J.K. Clark, S.J. Paddison, M. Eikerling, M. Dupuis, and T.A. Zawodzinski: A comparative ab initio study of the primary hydration and proton dissociation of various imide- and sulfonic acid ionomers. J. Phys. Chem. A 116(7), 1801 (2012).

    CAS  Google Scholar 

  57. M. Laporta, M. Pegoraro, and L. Zanderighi: Perfluorosulfonated membrane (Nafion): FTIR study of the state of water with increasing humidity. Phys. Chem. Chem. Phys. 1(19), 4619 (1999).

    CAS  Google Scholar 

  58. S.J. Paddison: The modeling of molecular structure and ion transport in sulfonic acid-based ionomer membranes. J. New Mater. Electrochem. Syst. 4(4), 197 (2001).

    CAS  Google Scholar 

  59. K.D. Kreuer, S.J. Paddison, E. Spohr, and M. Schuster: Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. 104(10), 4637 (2004).

    CAS  Google Scholar 

  60. D.A. Schiraldi: Perfluorinated polymer electrolyte membrane durability. J. Macromol. Sci., Polym. Rev. 46(3), 315 (2006).

    CAS  Google Scholar 

  61. C. Zhou, M.A. Guerra, Z-M. Qiu, T.A. Zawodzinski, and D.A. Schiraldi: Chemical durability studies of perfluorinated sulfonic acid polymers and model compounds under mimic fuel cell conditions. Macromolecules 40(24), 8695 (2007).

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the U.S. Department of Energy under the Energy Efficiency and Renewable Energy (EERE) program and through the Sustainable Energy Education and Research Center (SEERC) at the University of Tennessee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Paddison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Paddison, S.J. Side-chain degradation of perfluorosulfonic acid membranes: An ab initio study. Journal of Materials Research 27, 1982–1991 (2012). https://doi.org/10.1557/jmr.2012.191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.191

Navigation