Skip to main content
Log in

New buffer layer material La(Pr)CrO3 for intermediate temperature solid oxide fuel cell using LaGaO3-based electrolyte film

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A metal-supported solid oxide fuel cell (SOFC) using Ce0.8Sm0.2O2 (Sm-doped ceria, SDC) buffer layer and La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte films showed a small degradation in the cell performance after a long-term operation because of La migration from the electrolyte to the buffer layer, resulted in a formation of a less conductive phase. Thus, various ceramic materials such as doped ceria and perovskite-related oxides were investigated for an effective buffer layer with respect to fabricating reliable metal-supported SOFCs using a LSGM electrolyte film. In particular, La-doped CeO2 (LDC) and Pr-doped LaCrO3 (LPCr) were investigated as buffer layer material since the materials showed chemical compatibility with the LSGM and anode materials. The cell using a LDC buffer layer showed a prior stability during the operation for 100 h at 973 K, while the power density of the cell was slightly low owing to the low electrical conductivity of LDC compared with that of SDC or LPCr. In contrast, the cell using a LPCr buffer layer revealed significantly low open circuit voltage (OCV) and power density, which were attributed to Pr decomposition in the LPCr caused by the reactivity with water vapor. However, the metal-supported cell with a multilayer electrolyte film including LSGM/LPCr/SDC layers showed an almost theoretical OCV and reasonably high power density with no degradation after a long-term operation for 100 h at 973 K, suggesting that the LPCr layer effectively prevented La migration and the SDC layer led to avoid the Pr decomposition. Thus, a LPCr is an effective buffer layer material for reliable metal-supported SOFCs using a LSGM electrolyte thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
TABLE II.
TABLE III.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
TABLE IV.
FIG. 8.

Similar content being viewed by others

References

  1. O. Yamamoto: Solid oxide fuel cells: Fundamental aspects and prospects. Electrochim. Acta 45, 2423 (2000).

    Article  CAS  Google Scholar 

  2. S.C. Singhal: Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics 152-153, 405 (2002).

    Article  Google Scholar 

  3. N.Q. Minh: Solid oxide fuel cell technology–features and applications. Solid State Ionics 174, 271 (2004).

    Article  CAS  Google Scholar 

  4. H. Yahiro, Y. Baba, K. Eguchi, and H. Arai: High temperature fuel cell with ceria-yttria solid electrolyte. J. Electrochem. Soc. 135, 2077 (1988).

    Article  CAS  Google Scholar 

  5. A.V. Virkar: Theoretical analysis of solid oxide fuel cells with two-layer, composite electrolytes: Electrolyte stability. J. Electrochem. Soc. 138, 1481 (1991).

    Article  CAS  Google Scholar 

  6. M. Mogensen, N.M. Sammes, and G.A. Tompsett: Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 63 (2000).

    Article  CAS  Google Scholar 

  7. T. Ishihara, H. Matsuda, and Y. Takita: Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801 (1994).

    Article  CAS  Google Scholar 

  8. T. Ishihara, H. Minami, H. Matsuda, H. Nishiguchi, and Y. Takita: Decreased operating temperature of solid oxide fuel cells (SOFCs) by the application of LaGaO3-based oxide as electrolyte. Chem. Commun. 8, 929 (1996).

    Article  Google Scholar 

  9. T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, and Y. Takita: Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor. J. Electrochem. Soc. 145, 3177 (1998).

    Article  CAS  Google Scholar 

  10. M. Feng, J.B. Goodenough, K. Huang, and C. Milliken: Fuel cells with doped lanthanum gallate electrolyte. J. Power Sources 63, 47 (1996).

    Article  CAS  Google Scholar 

  11. K. Huang, R. Tichy, and J.B. Goodenough: Superior perovskite oxide-ion conductor; strontium-and magnesium-doped LaGaO3: I, phase relationships and electrical properties. J. Am. Ceram. Soc. 81, 2565 (1998).

    Article  CAS  Google Scholar 

  12. K. Huang, J.H. Wan, and J.B. Goodenough: Increasing power density of LSGM-based solid oxide fuel cells using new anode materials. J. Electrochem. Soc. 148, A788 (2001).

    Article  CAS  Google Scholar 

  13. Z.H. Bi, B.L. Yi, W. Wang, Y.L. Dong, Y.C. Wu, Y.C. She, and M.J. Cheng: A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes. Electrochem. Solid-State Lett. 7, A105 (2004).

    Article  CAS  Google Scholar 

  14. D.Y. Lee, J.H. Han, E.G. Kim, R.H. Song, and D.R. Shin: Performance of strontium- and magnesium-doped lanthanum gallate electrolyte with lanthanum-doped ceria as a buffer layer for IT-SOFCs. J. Power Sources, 185, 207 (2008).

    Article  CAS  Google Scholar 

  15. J.W. Yan, Z.G. Lu, Y. Jiang, Y.L. Dong, Y.C. Yu, and W.Z. Li: Fabrication and testing of a doped lanthanum gallate electrolyte thin-film solid oxide fuel cell. J. Electrochem. Soc. 149, A1132 (2002).

    Article  CAS  Google Scholar 

  16. T. He, Q. He, L. Pei, and Y. Ji: Doped lanthanum gallate film solid oxide fuel cells fabricated on a Ni/YSZ anode support. J. Am. Ceram. Soc. 89, 2664 (2006).

    Article  CAS  Google Scholar 

  17. W. Guo, J. Liu, and Y. Zhang: Electrical and stability performance of anode-supported solid oxide fuel cells with strontium- and magnesium-doped lanthanum gallate thin electrolyte. Electrochim. Acta 53, 4420 (2008).

    Article  CAS  Google Scholar 

  18. F. Bozza, R. Polini, and E. Traversa: High performance anode-supported intermediate temperature solid oxide fuel cells (IT-SOFCs) with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte films prepared by electrophoretic deposition. Electrochem. Commun. 11, 1680 (2009).

    Article  CAS  Google Scholar 

  19. J.W. Yan, H. Matsumoto, M. Enoki, and T. Ishihara: High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3-δ composite film. Electrochem. Solid-State Lett. 8, A389 (2005).

    Article  CAS  Google Scholar 

  20. T. Ishihara, J.W. Yan, M. Shinagawa, and H. Matsumoto: Ni-Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film. Electrochim. Acta 52, 1645 (2006).

    Article  CAS  Google Scholar 

  21. Y.W. Ju, H. Matsumoto, T. Ishihara, T. Inagaki, and H. Eto: Preparation of LaGaO3 based oxide thin film on porous Ni-Fe metal substrate and its SOFC application. J. Korean Chem. Soc. 45, 796 (2008).

    CAS  Google Scholar 

  22. Y.W. Ju, H. Eto, T. Inagaki, and T. Ishihara: High power SOFC using LSGM film on NiFe porous bi-metal substrate. ECS Trans. 25, 719 (2009).

    Article  CAS  Google Scholar 

  23. Y.W. Ju, H. Eto, T. Inagaki, and T. Ishihara: Preparation of Ni-Fe bimetallic porous anode support for SOFCs using LaGaO3 based electrolyte film with high power density. J. Power Sources 195, 6294 (2010).

    Article  CAS  Google Scholar 

  24. Y.W. Ju, T. Inagaki, S. Ida, and T. Ishihara: Sm(Sr)CoO3 cone cathode on LaGaO3 thin film electrolyte for with IT-SOFC high power density. J. Electrochem. Soc. 158, 1 (2011).

    Google Scholar 

  25. N.Q. Minh, T.R. Armstrong, J.R. Esopa, J.V. Guiheen, C.R. Home, and J.J. van Ackeren: Proceedings of the third international symposium on the solid oxide fuel cell. Electrochem. Soc. Proc. 93-94, 801 (1993).

    Google Scholar 

  26. R. Yamaguchi, K. Hashimoto, H. Sakata, H. Kajiware, K. Watanable, T. Setiguchi, K. Eguchi, and H. Arai: Proceedings of the third international symposium on the solid oxide fuel cell. Electrochem. Soc. Proc. 93-94, 704 (1993).

    Google Scholar 

  27. C.C. Chen, M.M. Nasrallah, and H.U. Anderson: Synthesis and characterization of YSZ thin film electrolytes. Solid State Ionics 71, 101 (1994).

    Article  Google Scholar 

  28. S. de Souza, S.J. Visco, and L.C. De Jonghe: Thin film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics 98, 57 (1997).

    Article  Google Scholar 

  29. C. Lunot and Y. Denos: Evaluation of Different Processes to Fabricate Thin Film Solid Fuel Cells, in Proceeding of the 1998 International Gas Research Conference, San Diego, California, November 8-11, 1998; D.A. Dolenc, ed., Gas Research Institute: Chicago, IL, 1998; p. 834.

    Google Scholar 

  30. C.J. Li, C.X. Li, Y.Z. Xing, M. Gao, and G.J. Yang: Influence of YSZ electrolyte thickness on the characteristics of plasma-sprayed cermet supported tubular SOFC. Solid State Ionics 177, 2065 (2006).

    Article  CAS  Google Scholar 

  31. W. Bai, K.L. Choy, R.A. Rudkin, and B.C.H. Steele: The process, structure and performance of pen cells for the intermediate temperature SOFCs. Solid State Ionics 113-114, 259 (1998).

    Article  Google Scholar 

  32. L.S. Wang, E.S. Thiele, and S.A. Barnett: Sputter deposition of yttria-stabilized zirconia and silver cermet electrodes for SOFC applications. Solid State Ionics 52, 261 (1992).

    Article  CAS  Google Scholar 

  33. H. Yamamura, E. Katoh, M. Ichikawa, K. Kakinuma, M. Tori, and H. Haneda: Multiple doping effect on the electrical conductivity in the (Ce1-x-yLaxMy)O2-δ (M = Ca, Sr) system. Electrochemistry 68, 455 (2000).

    Article  CAS  Google Scholar 

  34. D.J. Kim: Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions. J. Am. Ceram. Soc. 72, 1415 (1989).

    Article  CAS  Google Scholar 

  35. L.L. Zhang: Doped LaCrO3 as Interconnect in SOFC. (Ohio State Literature Review, Columbus, OH, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Inagaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, YW., Hong, JE., Hyodo, J. et al. New buffer layer material La(Pr)CrO3 for intermediate temperature solid oxide fuel cell using LaGaO3-based electrolyte film. Journal of Materials Research 27, 1906–1914 (2012). https://doi.org/10.1557/jmr.2012.187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.187

Navigation