Skip to main content
Log in

Oxygen exchange kinetics on solid oxide fuel cell cathode materials—general trends and their mechanistic interpretation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The compilation of measured effective rate constants for oxygen surface exchange on mixed conducting perovskites, which covers a great variety of compositions ranging from (La,Sr)MnO3−δ to (La,Sr)(Co,Fe)O3−δ and (Ba,Sr)(Co,Fe)O3−δ, demonstrates the importance of ionic conductivity—i.e., high oxygen vacancy concentration as well as vacancy mobility—as a key factor for the surface oxygen exchange rate. This interpretation is corroborated by ab initio calculations, which indicate that the approach of an oxygen vacancy to oxygen intermediates adsorbed on the surface is the rate determining step for a number of perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. R. Merkle and J. Maier: Oxygen incorporation into Fe-doped SrTiO3: Mechanistic interpretation of the surface reaction. Phys. Chem. Chem. Phys. 4, 4140 (2002).

    CAS  Google Scholar 

  2. R. Merkle and J. Maier: The significance of defect chemistry for the rate of gas-solid reactions: Three examples. Top. Catal. 38, 41 (2006).

    Google Scholar 

  3. W.C. Jung and H.L. Tuller: A new model describing solid oxide fuel cell cathode kinetics: Model thin film SrTi1-xFexO3-δ mixed conducting oxides - a case study. Adv. Energy Mat. 1, 1184 (2011).

    CAS  Google Scholar 

  4. D. Gostovic, J.R. Smith, D.P. Kundinger, K.S. Jones, and E.D. Wachsman: Three-dimensional reconstruction of porous LSCF cathodes. Electrochem. Solid-State Lett. 10, B214 (2007).

    CAS  Google Scholar 

  5. J.R. Wilson, A.T. Duong, M. Gameiro, H-Y. Chen, K. Thornton, D.R. Mumm, and S.A. Barnett: Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode. Electrochem. Commun. 11, 1052 (2009).

    CAS  Google Scholar 

  6. G.J. la O’, S.J. Ahn, E. Crumlin, Y. Orikasa, M.D. Biegalski, H.M. Christen, and Y. Shao-Horn: Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. Angew. Chem. Int. Ed. 49, 5344 (2010).

    Google Scholar 

  7. F.S. Baumann, J. Fleig, G. Cristiani, B. Stuhlhofer, H-U. Habermeier, and J. Maier: Quantitative comparison of mixed conducting SOFC cathode materials by means of thin film model electrodes. J. Electrochem. Soc. 154, B931 (2007).

    CAS  Google Scholar 

  8. L. Wang, R. Merkle, and J. Maier: Surface kinetics and mechanism of oxygen incorporation into Ba1−xSrxCoyFe1-yO3-δ SOFC microelectrodes. J. Electrochem. Soc. 157, B1802 (2010).

    CAS  Google Scholar 

  9. L. Wang, R. Merkle, J. Maier, T. Acartürk, and U. Starke: Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3-δ films. Appl. Phys. Lett. 94, 071908 (2009).

    Google Scholar 

  10. Y.A. Mastrikov, R. Merkle, E. Heifets, E.A. Kotomin, and J. Maier: Pathways for the oxygen incorporation reaction into mixed conducting perovskites: A DFT-based kinetic analysis for (La, Sr)MnO3. J. Phys. Chem. C 114, 3017 (2010).

    CAS  Google Scholar 

  11. R. Merkle, Y.A. Mastrikov, E.A. Kotomin, M.M. Kuklja, and J. Maier: First principles calculations of oxygen vacancy formation and migration in Ba1-xSrxCo1-yFeyO3-δ perovskites. J. Electrochem. Soc. 159, B219 (2012).

    CAS  Google Scholar 

  12. R.A. De Souza and M. Martin: Using 18O/16O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: Method and application. Phys. Chem. Chem. Phys. 10, 2356 (2008).

    Google Scholar 

  13. J.R. Jurado, M.T. Colomer, and J.R. Frade: Impedance spectroscopy of Sr0.97Ti1-xFexO3-δ materials with moderate Fe-contents. Solid State Ionics 143, 251 (2001).

    CAS  Google Scholar 

  14. J. Fleig, H-R. Kim, J. Jamnik, and J. Maier: Oxygen reduction kinetics of lanthanum manganite (LSM) model cathodes: Partial pressure dependence and rate-limiting steps. Fuel Cells 8, 330 (2008).

    CAS  Google Scholar 

  15. J. Mizusaki, Y. Yonemura, H. Kamata, K. Ohyama, N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya, T. Sasamoto, H. Inaba, and T. Hashimoto: Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3. Solid State Ionics 132, 167 (2000).

    CAS  Google Scholar 

  16. J. Mizusaki, J. Tabuchi, T. Matsuura, S. Yamauchi, and K. Fueki: Electrical conductivity and Seebeck coefficient of nonstoichiometric La1-xSrxCoO3-δ. J. Electrochem. Soc. 136, 2082 (1989).

    CAS  Google Scholar 

  17. E.V. Bongio, H. Black, F.C. Raszewski, D. Edwards, C.J. McConville, and V.R.W. Amarakoon: Microstructural and high-temperature electrical characterization of La1-xSrxFeO3-δ. J. Electroceram. 14, 193 (2005).

    CAS  Google Scholar 

  18. Z. Chen, R. Ran, W. Zhou, Z. Shao, and S. Liu: Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. Electrochim. Acta 52, 7343 (2007).

    CAS  Google Scholar 

  19. V.L. Kozhevnikov, I.A. Leonidov, M.V. Patrakeev, E.B. Mitberg, and K.R. Poeppelmeier: Electrical properties of the ferrite SrFeOy at high temperatures. J. Solid State Chem. 158, 320 (2001).

    CAS  Google Scholar 

  20. R.A. de Souza and J.A. Kilner: Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites part II. Oxygen surface exchange. Solid State Ionics 126, 153 (1999).

    Google Scholar 

  21. I.C. Fullarton, J-P. Jacobs, H.E. van Benthem, J.A. Kilner, H.H. Brongersma, P.J. Scanlon, and B.C.H. Steele: Study of oxygen ion transport in acceptor doped samarium cobalt oxide. Ionics 1, 51 (1995).

    CAS  Google Scholar 

  22. A.V. Berenov, A. Atkinson, J.A. Kilner, E. Bucher, and W. Sitte: Oxygen tracer diffusion and surface exchange kinetics in La0.6Sr0.4CoO3-δ. Solid State Ionics 181, 819 (2010).

    CAS  Google Scholar 

  23. T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, and K. Fueki: Diffusion of oxide ion vacancies in perovskite-type oxides. J. Solid State Chem. 73, 179 (1988).

    CAS  Google Scholar 

  24. P.M. Geffroy, J.M. Bassat, A. Vivet, S. Fourcade, T. Chartier, P. Del Gallo, and N. Richet: Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of La1-xSrxFe1-yGayO3-δ perovskite membranes. J. Membr. Sci. 354, 6 (2010).

    CAS  Google Scholar 

  25. A. Rothschild, W. Menesklou, H.L. Tuller, and E. Ivers-Tiffee: Electronic structure, defect chemistry, and transport properties of SrTi1-xFexO3-δ solid solutions. Chem. Mater. 18, 3651 (2006).

    CAS  Google Scholar 

  26. L.M. van der Haar, M.W. den Otter, M. Morskate, H.J.M. Bouwmeester, and H. Verweij: Chemical diffusion and oxygen surface transfer of La1-xSrxCoO3-δ studied with electrical conductivity relaxation. J. Electrochem. Soc. 149, J41 (2002).

    Google Scholar 

  27. J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa: Nonstoichiometry of the perovskite-type oxides La1-xSrxCoO3-δ. J. Solid State Chem. 80, 102 (1989).

    CAS  Google Scholar 

  28. J. Yoo, A. Verma, S. Wang, and A.J. Jacobson: Oxygen transport kinetics in SrFeO3-δ, La0.5Sr0.5FeO3-δ, and La0.2Sr0.8Cr0.2Fe0.8O3-δ measured by electrical conductivity relaxation. J. Electrochem. Soc. 152, A497 (2005).

    CAS  Google Scholar 

  29. J.E. ten Elshof, M.H.R. Lankhorst, and H.J.M. Bouwmeester: Oxygen exchange and diffusion coefficients of strontium-doped lanthanum ferrites by electrical conductivity relaxation. J. Electrochem. Soc. 144, 1060 (1997).

    CAS  Google Scholar 

  30. D. Chen and Z. Shao: Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ mixed conductor. Int. J. Hydrogen Energy 36, 6948 (2011).

    CAS  Google Scholar 

  31. J. Maier: On the correlation of macroscopic and microscopic rate constants in solid state chemistry. Solid State Ionics 112, 197 (1998).

    CAS  Google Scholar 

  32. J.A. Kilner, R.A. De Souza, and I.C. Fullarton: Surface exchange of oxygen in mixed conducting perovskite oxides. Solid State Ionics 86, 703 (1996).

    Google Scholar 

  33. M. Mosleh, M. Sogaard, and P.V. Hendriksen: Kinetics and mechanism of oxygen surface exchange on La0.6Sr0.4FeO3-δ thin films. J. Electrochem. Soc. 156, B441 (2009).

    CAS  Google Scholar 

  34. J. Fleig and J. Maier: The polarization of mixed conducting SOFC cathodes: Effects of surface reaction coefficient, ionic conductivity and geometry. J. Eur. Ceram. Soc. 24, 1343 (2004).

    CAS  Google Scholar 

  35. Y.M. Choi, M.E. Lynch, M.C. Lin, and M.L. Liu: Prediction of O2 dissociation kinetics on LaMnO3-based cathode materials for solid oxide fuel cells. J. Phys. Chem. C 113, 7290 (2009).

    CAS  Google Scholar 

  36. S. Piskunov, E. Heifets, T. Jacob, E.A. Kotomin, D.E. Ellis, and E. Spohr: Electronic structure and thermodynamic stability of LaMnO3 and La1-xSrxMnO3 (001) surfaces: Ab initio calculations. Phys. Rev. B, 78, 121406 (2008).

    Google Scholar 

  37. Y.A. Mastrikov, E. Heifets, E.A. Kotomin, and J. Maier: Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces. Surf. Sci. 603, 326 (2009).

    CAS  Google Scholar 

  38. J. Fleig, R. Merkle, and J. Maier: The p(O2) dependence of oxygen surface coverage and exchange current density of mixed conducting oxide electrodes: Model considerations. Phys. Chem. Chem. Phys. 9, 2713 (2007).

    CAS  Google Scholar 

  39. R.A. De Souza and J.A. Kilner: Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites Part I. Oxygen tracer diffusion. Solid State Ionics 106, 175 (1998).

    Google Scholar 

  40. J. Mizusaki, M. Yoshihiro, S. Yamauchi, and K. Fueki: Nonstoichiometry and defect structure of the perovskite-type oxides La1-xSrxFeO3-δ. J. Solid State Chem. 58, 257 (1985).

    CAS  Google Scholar 

  41. Y.M. Choi, M.C. Lin, and M.L. Liu: Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations. J. Power Sources 195, 1441 (2010).

    CAS  Google Scholar 

  42. Z. Shao and S.M. Haile: A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170 (2004).

    CAS  Google Scholar 

  43. F.S. Baumann, J. Fleig, H-U. Habermeier, and J. Maier: Ba0.5Sr0.5Co0.8Fe0.2O3−δ thin film microelectrodes investigated by impedance spectroscopy. Solid State Ionics 177, 3187 (2006).

    CAS  Google Scholar 

  44. Z.Q. Deng, W.S. Yang, W. Liu, and C.S. Chen: Relationship between transport properties and phase transformation in mixed-conducting oxides. J. Solid State Chem. 179, 362 (2006).

    CAS  Google Scholar 

  45. S. Yakovlev, C-Y. Yoo, S. Fang, and H.J.M. Bouwmeester: Phase transformation and oxygen equilibration kinetics of pure and Zr-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite oxide probed by electrical relaxation. Appl. Phys. Lett. 96, 254101 (2011).

    Google Scholar 

  46. J-I. Jung, S.T. Misture, and D.D. Edwards: Oxygen stoichiometry, electrical conductivity, and thermopower measurements of BSCF (Ba0.5Sr0.5CoxFe1-xO3-δ, 0 ≤ x ≤ 0.8) in air. Solid State Ionics 181, 1287 (2010).

    CAS  Google Scholar 

  47. E. Bucher, W. Sitte, G.B. Caraman, V.A. Cherepanov, T.V. Aksenova, and M.V. Ananyev: Defect equilibria and partial molar properties of (La, Sr)(Co, Fe)O3−δ. Solid State Ionics 177, 3109 (2006).

    CAS  Google Scholar 

  48. M. Burriel, C. Niedrig, W. Menesklou, S.F. Wagner, J. Santiso, and E. Ivers-Tiffee: BSCF epitaxial thin films: Electrical transport and oxygen surface exchange. Solid State Ionics 181, 602 (2010).

    CAS  Google Scholar 

  49. H.J.M. Bouwmeester, C. Song, J. Zhu, J. Yi, M. van Sint Annaland, and B.A. Boukamp: A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. Phys. Chem. Chem. Phys. 11, 9640 (2009).

    CAS  Google Scholar 

  50. R. Merkle, J. Maier, and H.J.M. Bouwmeester: A linear free energy relationship for gas-solid interactions: Correlation between surface rate constant and diffusion coefficient of oxygen tracer exchange for electron-rich perovskites. Angew. Chem. Int. Ed. 43, 5069 (2004).

    CAS  Google Scholar 

  51. R.A. De Souza: A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. Phys. Chem. Chem. Phys. 8, 890 (2006).

    Google Scholar 

  52. Y-L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, and D. Morgan: Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966 (2011).

    CAS  Google Scholar 

  53. M. Pavone, A.M. Ritzmann, and E.A. Carter: Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ. Sci. 4, 4933 (2011).

    CAS  Google Scholar 

  54. S. Svarcova, K. Wiik, J. Tolchard, H.J.M. Bouwmeester, and T. Grande: Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3-δ. Solid State Ionics 178, 1787 (2008).

    CAS  Google Scholar 

  55. M.M. Kuklja, Y.A. Mastrikov, B. Jansang, and E.A. Kotomin: Intrinsic defects, disordering, and structural stability of BaxSr1-xCoyFe1-yO3-δ perovskite solid solutions. J. Phys. Chem. C (2012, submitted).

    Google Scholar 

  56. A. Tarancon, S.J. Skinner, R.J. Chater, F. Hernendez-Ramirez, and J.A. Kilner: Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175 (2007).

    CAS  Google Scholar 

  57. M. Burriel, G. Garcia, J. Santiso, J.A. Kilner, R.J. Chater, and S.J. Skinner: Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+δ. J. Mater. Chem. 18, 416 (2008).

    CAS  Google Scholar 

  58. D. Parfitt, A. Chroneos, J.A. Kilner, and R.W. Grimes: Molecular dynamics study of oxygen diffusion in Pr2NiO4+δ. Phys. Chem. Chem. Phys. 12, 6834 (2010).

    CAS  Google Scholar 

  59. M. Sase, K. Yashiro, K. Sato, J. Mizusaki, T. Kawada, N. Sakai, T. Horita, and H. Yokokawa: Enhancement of oxygen exchange at the hetero interface of (La, Sr)CoO3/(La, Sr)2CoO4 in composite ceramics. Solid State Ionics 178, 1843 (2008).

    CAS  Google Scholar 

  60. E.J. Crumlin, E. Mutoro, S.J. Ahn, G.J. la O’, D.N. Leonard, A. Borisevich, M.D. Biegalski, H.M. Christen, and Y. Shao-Horn: Oxygen reduction kinetics enhancement on a heterostructured oxide surface for solid oxide fuel cells. J. Phys. Chem. Lett. 1, 3149 (2010).

    CAS  Google Scholar 

  61. J.W. Han and B. Yildiz: Enhanced one dimensional mobility of oxygen on strained LaCoO3(001) surface. J. Mater. Chem. 21, 18983 (2011).

    CAS  Google Scholar 

  62. S.B. Adler, X.Y. Chen, and J.R. Wilson: Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. J. Catal. 245, 91 (2007).

    CAS  Google Scholar 

Download references

Acknowledgment

The authors thank G. Cristiani, B. Stuhlhofer, S. Schmid for PLD film preparation and microelectrode structuring, and G. Gδtz for XRD (MPI for Solid State Research, Stuttgart), J. Fleig (Technical University, Vienna), M.M. Kuklja (University of Maryland), and E. Heifets for fruitful discussions. L.W. thanks the Hans L. Merkle-Stiftung im Stifterverband fur die Deutsche Wissenschaft for financial support and Y.A.M. was partly supported by EC FP7 NASA-OTM (Grant No. 228701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rotraut Merkle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Merkle, R., Mastrikov, Y.A. et al. Oxygen exchange kinetics on solid oxide fuel cell cathode materials—general trends and their mechanistic interpretation. Journal of Materials Research 27, 2000–2008 (2012). https://doi.org/10.1557/jmr.2012.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.186

Navigation