Skip to main content
Log in

Dislocation mechanisms of radius effect on displacement bursts during spherical nanoindentations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Indentation load–displacement curves for Mo (100) single crystals reveal clear displacement bursts from spherical indenters with various radii from ∼0.1 to ∼130 μm. There are two different size-dependent mechanisms for dislocation evolution involved during the displacement bursts. It has been postulated that these bursts are triggered by the nucleation of dislocations for a small indenter radius and the activation of preexisting dislocations for a large indenter radius. We present a simple model with which the displacement bursts from a larger indenter radius can be rationalized. This model relates the load and the excursion length during the first displacement burst. The correspondence between the model and experimental data indicates that the displacement bursts are initiated by the activation of preexisting dislocations and the model can accurately describe the mechanism for the displacement bursts from large indenters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, and W.W. Gerberich: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057 (1997).

    Article  CAS  Google Scholar 

  3. C.A. Schuh, J.K. Mason, and A.C. Lund: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).

    Article  CAS  Google Scholar 

  4. P.R. Cha, D.J. Srolovitz, and T.K. Vanderlick: Molecular dynamics simulation of single asperity contact. Acta Mater. 52, 3983 (2004).

    Article  CAS  Google Scholar 

  5. K.J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh: Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67, 104105 (2003).

    Article  Google Scholar 

  6. A. Gouldstone, K.J. Van Vliet, and S. Suresh: Nanoindentation: Simulation of defect nucleation in a crystal. Nature 411, 656 (2001).

    Article  CAS  Google Scholar 

  7. S. Shim, H. Bei, E.P. George, and G.M. Pharr: A different type of indentation size effect. Scr. Mater. 59, 1095 (2008).

    Article  CAS  Google Scholar 

  8. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: Mechanism-based strain gradient plasticity -I. J. Mech. Phys. Solids 47, 1239 (1999).

    Article  Google Scholar 

  9. S. Qu, Y. Huang, G.M. Pharr, and K.C. Hwang: The indentation size effect in the spherical indentation of iridium: A study via the conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 22, 1265 (2006).

    Article  CAS  Google Scholar 

  10. W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt: The injection of plasticity by millinewton contacts. Acta Metall. Mater. 43, 1569 (1995).

    Article  CAS  Google Scholar 

  11. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  12. D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 4605 (1998).

    Article  Google Scholar 

  13. W.W. Gerberich, D.E. Karmer, N.I. Tymiak, A.A. Volinsky, D.F. Bahr, and M.D. Kriese: Nanoindentation-induced defect-interface interactions: Phenomena, methods and limitations. Acta Mater. 47, 4115 (1999).

    Article  CAS  Google Scholar 

  14. A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).

    Article  CAS  Google Scholar 

  15. W.W. Gerberich, W.M. Mook, M.D. Chambers, M.J. Cordill, C.R. Perrey, C.B. Carter, R.E. Miller, W.A. Curtin, R. Mukherjee, and S.L. Girshick: An energy balance criterion for nanoindentation-induced single and multiple dislocation events. J. Appl. Mech. 73, 327 (2006).

    Article  CAS  Google Scholar 

  16. Y. Shibutani, T. Tsuru, and A. Koyama: Nanoplastic deformation of nanoindentation: Crystallographic dependence of displacement bursts. Acta Mater. 55, 1813 (2007).

    Article  CAS  Google Scholar 

  17. H. Bei, Y.F. Gao, S. Shim, E.P. George, and G.M. Pharr: Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B 77, 060103 (2008).

    Article  Google Scholar 

  18. D. Lorenz, A. Zeckzer, U. Hilpert, and P. Grau: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).

    Article  Google Scholar 

  19. J.R. Morris, H. Bei, G.M. Pharr, and E.P. George: Size effects and stochastic behavior of nanoindentation pop in. Phys. Rev. Lett. 106, 165502 (2011).

    Article  CAS  Google Scholar 

  20. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  21. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties–A Handbook (MIT Press, Cambridge, MA, 1971).

    Google Scholar 

  22. S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, and S. Yip: Ideal shear strain of metals and ceramics. Phys. Rev. B 70, 104104 (2004).

    Article  Google Scholar 

  23. H. Bei, S. Shim, G.M. Pharr, and E.P. George: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).

    Article  CAS  Google Scholar 

  24. D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy: Size-affected single-slip behavior of nickel microcrystals. Acta Mater. 53, 4065 (2005).

    Article  CAS  Google Scholar 

  25. C. Zhou, S.B. Biner, and R. LeSar: Discrete dislocation dynamics simulations of plasticity at small scales. Acta Mater. 58, 1565 (2010).

    Article  CAS  Google Scholar 

  26. J. Senger, D. Weygand, P. Gumbsch, and O. Kraft: Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading. Scr. Mater. 58, 587 (2008).

    Article  CAS  Google Scholar 

  27. K.L. Johnson: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  28. H. Bei, Z.P. Lu, and E.P. George: Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter. Phys. Rev. Lett. 93, 125511 (2004).

    Article  Google Scholar 

  29. W. Zielinski, H. Huang, and W.W. Gerberich: Microscopy and microindentation mechanics of single crystal Fe-3 wt.%Si: Part II. TEM of the indentation plastic zone. J. Mater. Res. 8, 1300 (1993).

    Article  CAS  Google Scholar 

  30. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).

    Article  CAS  Google Scholar 

  31. F. Guiu and P.L. Pratt: The effect of orientation on the yielding and flow of molybdenum single crystals. Phys. Status Solidi B 15, 539 (1966).

    Article  CAS  Google Scholar 

  32. H. Bei, S. Shim, E.P. George, M.K. Miller, E.G. Herbert, and G.M. Pharr: Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr. Mater. 57, 397 (2007).

    Article  CAS  Google Scholar 

  33. M.V. Swain and B.R. Lawn: A study of dislocation arrays at spherical indentations in LiF as a function of indentation stress and strain. Phys. Status Solidi 35, 909 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chansun Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, C., Shim, S. Dislocation mechanisms of radius effect on displacement bursts during spherical nanoindentations. Journal of Materials Research 27, 2161–2166 (2012). https://doi.org/10.1557/jmr.2012.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.183

Navigation