Skip to main content

Advertisement

Log in

Enhancement on afterglow properties of Eu3+ by Ti4+, Mg2+ incorporation in CaWO4 matrix

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The long afterglow phosphor, CaWO4: Eu3+, is synthesized and the intensity and duration of its afterglow can be enhanced by the Ti4+ and Mg2+ incorporation. The x-ray diffraction patterns depict pure tetragonal CaWO4 of all samples. The emission spectra show the Eu3+ emission and the charge transfer (CT) emission of WO42−. The intensity of CT increases with the Mg2+ incorporation. The excitation spectra monitoring 616 nm exhibit the strongest CT band with Ti4+ incorporation. These results indicate that Mg2+ enhances the efficiency of CT emission of WO42− while the Ti4+ enhances the energy transfer rate from CT to Eu3+. Since the thermoluminescence (TL) curves do not imply a new trap, the enhancement of the afterglow results from the coreinforcement of CT efficiency and energy transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE II.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. T. Jüstel, H. Nikol, and C. Ronda: New developments in the field of luminescent materials for lighting and displays. Angew. Chem. Int. Ed. 37, 3084 (1998).

    Article  Google Scholar 

  2. H.A. Höppe: Recent developments in the field of inorganic phosphors. Angew. Chem. Int. Ed. 48, 3572 (2009).

    Article  Google Scholar 

  3. B. Lei, L. Sha, H. Zhang, Y. Liu, S-q. Man, and S. Yue: Preparation and luminescence properties of green-light-emitting afterglow phosphor Ca8Mg(SiO4)4Cl2:Eu2+. Solid State Sci. 12, 2177 (2010).

    Article  CAS  Google Scholar 

  4. Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu: Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4. Appl. Phys. Lett. 98, 121906 (2011).

    Article  Google Scholar 

  5. Q. M. le de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman: Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 104, 9266 (2007).

    Article  Google Scholar 

  6. B-Y. Wu, H-F. Wang, J-T. Chen, and X-P. Yan: Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133, 686 (2011).

    Article  CAS  Google Scholar 

  7. X. Xiao and X. Xiao: Long afterglow silicate luminescent material and its manufacturing method. U.S. Patent 6,093,346 (2000).

    Google Scholar 

  8. Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang: Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J. Mater. Sci. Lett. 20, 1505 (2001).

    Article  CAS  Google Scholar 

  9. Y. Murayama, N. Takeuchi, Y. Aoki, and T. Matsuzawa: Phosphorescent phosphor. U.S. Patent 5,424,006 (1995).

    Google Scholar 

  10. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama: A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J. Electrochem. Soc. 143, 2670 (1996).

    Article  CAS  Google Scholar 

  11. W. Li, Y. Liu, and P. Ai: Synthesis and luminescence properties of red long-lasting phosphor Y2O2S: Eu3+, Mg2+, Ti4+ nanoparticles. Mater. Chem. Phys. 119, 52 (2010).

    Article  CAS  Google Scholar 

  12. P.F. Ai, Y.L. Liu, W.Y. Li, and L.Y. Xiao: Synthesis and luminescent characterization of Y2O2S: Eu3+, Mg2+, Ti4+ nanotubes. Physica B 405, 3360 (2010).

    Article  CAS  Google Scholar 

  13. Y. Miyamoto, H. Kato, Y. Honna, H. Yamamoto, and K. Ohmi: An orange-emitting, long-persistent phosphor, Ca2Si5N8: Eu2+, Tm3+. J. Electrochem. Soc. 156, J235 (2009).

    Article  CAS  Google Scholar 

  14. B. Lei, K. Machida, T. Horikawa, H. Hanzawa, N. Kijima, Y. Shimomura, and H. Yamamoto: Reddish-orange long-lasting phosphorescence of Ca2Si5N8: Eu2+, Tm3+ phosphor. J. Electrochem. Soc. 157, J196 (2010).

    Article  CAS  Google Scholar 

  15. X. Xu, Y. Wang, W. Zeng, and Y. Gong: Luminescence and storage properties of Sm-doped alkaline-earth atannates. J. Electrochem. Soc. 158, J305 (2010).

    Article  Google Scholar 

  16. Z-W. Liu, Y.L. Liu, D-S. Yuan, J-X. Zhang, J-H. Rong, and L-H. Huang: Long-lasting phosphorescence in Eu3+-doped CaWO4. Chin. J. Inorg. Chem. 20, 1433 (2004) (in Chinese).

    CAS  Google Scholar 

  17. Z. Hong, P. Zhang, X. Fan, and M. Wang: Eu3+ red long afterglow in Y2O2S: Ti, Eu phosphor through afterglow energy transfer. J. Lumin. 124, 127 (2007).

    Article  CAS  Google Scholar 

  18. Y. Murazaki, K. Arak, and K. Ichinomiya: A new long persistence red phosphors. Rare Earth Jpn. 35, 41 (1999).

    CAS  Google Scholar 

  19. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976).

    Article  CAS  Google Scholar 

  20. A.L. Patterson: The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978 (1939).

    Article  CAS  Google Scholar 

  21. M.L. Pang, J. Lin, S.B. Wang, M. Yu, Y.H. Zhou, and X.M. Han: Luminescent properties of rare-earth-doped CaWO4 phosphor films prepared by the Pechini sol–gel process. J. Phys. Condens. Matter. 15, 5157 (2003).

    Article  CAS  Google Scholar 

  22. G. Lin, G. Dong, D. Tan, X. Liu, Q. Zhang, D. Chen, J. Qiu, Q. Zhao, and Z. Xu: Long lasting phosphorescence in oxygen-deficient zinc–boron-germanosilicate glass–ceramics. J. Alloys Compd. 504, 177 (2010).

    Article  CAS  Google Scholar 

  23. P. Dorenbos, A.H. Krumpel, E. van der Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli: Lanthanide level location in transition metal complex compounds. Opt. Mater. 32, 1681 (2010).

    Article  CAS  Google Scholar 

  24. L. Xiao, Q. Xiao, Y. Liu, P. Ai, Y. Li, and H. Wang: A transparent surface-crystallized Eu2+, Dy3+ co-doped strontium aluminate long-lasting phosphorescent glass-ceramic. J. Alloys Compd. 495, 72 (2010).

    Article  CAS  Google Scholar 

  25. E. Gürmen, E. Daniels, and J.S. King: Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction. J. Chem. Phys. 55, 1093 (1971).

    Article  Google Scholar 

  26. S. Shi, X. Liu, J. Gao, and J. Zhou: Spectroscopic properties and intense red-light emission of (Ca, Eu, M)WO4 (M = Mg, Zn, Li). Spectrochim. Acta, Part A 69, 396 (2008).

    Article  Google Scholar 

  27. Y. Zhang, N.A.W. Holzwarth, and R.T. Williams: Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Phys. Rev. B 57, 12738 (1998).

    Article  CAS  Google Scholar 

  28. W.M. Yen, S. Shionoya, and H. Yamamoto: Phosphors Handbook, 2nd ed. (CRC Press, Boca Raton, 2006), p. 454.

    Book  Google Scholar 

  29. F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobis, and M-H. Whangbo: Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration. Chem. Mater. 18, 3212 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21071034 and 20871033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Hu, Y., Kang, F. et al. Enhancement on afterglow properties of Eu3+ by Ti4+, Mg2+ incorporation in CaWO4 matrix. Journal of Materials Research 27, 959–964 (2012). https://doi.org/10.1557/jmr.2012.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.16

Navigation