Abstract
The long afterglow phosphor, CaWO4: Eu3+, is synthesized and the intensity and duration of its afterglow can be enhanced by the Ti4+ and Mg2+ incorporation. The x-ray diffraction patterns depict pure tetragonal CaWO4 of all samples. The emission spectra show the Eu3+ emission and the charge transfer (CT) emission of WO42−. The intensity of CT increases with the Mg2+ incorporation. The excitation spectra monitoring 616 nm exhibit the strongest CT band with Ti4+ incorporation. These results indicate that Mg2+ enhances the efficiency of CT emission of WO42− while the Ti4+ enhances the energy transfer rate from CT to Eu3+. Since the thermoluminescence (TL) curves do not imply a new trap, the enhancement of the afterglow results from the coreinforcement of CT efficiency and energy transfer rate.
Similar content being viewed by others
References
T. Jüstel, H. Nikol, and C. Ronda: New developments in the field of luminescent materials for lighting and displays. Angew. Chem. Int. Ed. 37, 3084 (1998).
H.A. Höppe: Recent developments in the field of inorganic phosphors. Angew. Chem. Int. Ed. 48, 3572 (2009).
B. Lei, L. Sha, H. Zhang, Y. Liu, S-q. Man, and S. Yue: Preparation and luminescence properties of green-light-emitting afterglow phosphor Ca8Mg(SiO4)4Cl2:Eu2+. Solid State Sci. 12, 2177 (2010).
Z. Ju, R. Wei, J. Zheng, X. Gao, S. Zhang, and W. Liu: Synthesis and phosphorescence mechanism of a reddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4. Appl. Phys. Lett. 98, 121906 (2011).
Q. M. le de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman: Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 104, 9266 (2007).
B-Y. Wu, H-F. Wang, J-T. Chen, and X-P. Yan: Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133, 686 (2011).
X. Xiao and X. Xiao: Long afterglow silicate luminescent material and its manufacturing method. U.S. Patent 6,093,346 (2000).
Y. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang: Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J. Mater. Sci. Lett. 20, 1505 (2001).
Y. Murayama, N. Takeuchi, Y. Aoki, and T. Matsuzawa: Phosphorescent phosphor. U.S. Patent 5,424,006 (1995).
T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama: A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J. Electrochem. Soc. 143, 2670 (1996).
W. Li, Y. Liu, and P. Ai: Synthesis and luminescence properties of red long-lasting phosphor Y2O2S: Eu3+, Mg2+, Ti4+ nanoparticles. Mater. Chem. Phys. 119, 52 (2010).
P.F. Ai, Y.L. Liu, W.Y. Li, and L.Y. Xiao: Synthesis and luminescent characterization of Y2O2S: Eu3+, Mg2+, Ti4+ nanotubes. Physica B 405, 3360 (2010).
Y. Miyamoto, H. Kato, Y. Honna, H. Yamamoto, and K. Ohmi: An orange-emitting, long-persistent phosphor, Ca2Si5N8: Eu2+, Tm3+. J. Electrochem. Soc. 156, J235 (2009).
B. Lei, K. Machida, T. Horikawa, H. Hanzawa, N. Kijima, Y. Shimomura, and H. Yamamoto: Reddish-orange long-lasting phosphorescence of Ca2Si5N8: Eu2+, Tm3+ phosphor. J. Electrochem. Soc. 157, J196 (2010).
X. Xu, Y. Wang, W. Zeng, and Y. Gong: Luminescence and storage properties of Sm-doped alkaline-earth atannates. J. Electrochem. Soc. 158, J305 (2010).
Z-W. Liu, Y.L. Liu, D-S. Yuan, J-X. Zhang, J-H. Rong, and L-H. Huang: Long-lasting phosphorescence in Eu3+-doped CaWO4. Chin. J. Inorg. Chem. 20, 1433 (2004) (in Chinese).
Z. Hong, P. Zhang, X. Fan, and M. Wang: Eu3+ red long afterglow in Y2O2S: Ti, Eu phosphor through afterglow energy transfer. J. Lumin. 124, 127 (2007).
Y. Murazaki, K. Arak, and K. Ichinomiya: A new long persistence red phosphors. Rare Earth Jpn. 35, 41 (1999).
R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976).
A.L. Patterson: The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978 (1939).
M.L. Pang, J. Lin, S.B. Wang, M. Yu, Y.H. Zhou, and X.M. Han: Luminescent properties of rare-earth-doped CaWO4 phosphor films prepared by the Pechini sol–gel process. J. Phys. Condens. Matter. 15, 5157 (2003).
G. Lin, G. Dong, D. Tan, X. Liu, Q. Zhang, D. Chen, J. Qiu, Q. Zhao, and Z. Xu: Long lasting phosphorescence in oxygen-deficient zinc–boron-germanosilicate glass–ceramics. J. Alloys Compd. 504, 177 (2010).
P. Dorenbos, A.H. Krumpel, E. van der Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli: Lanthanide level location in transition metal complex compounds. Opt. Mater. 32, 1681 (2010).
L. Xiao, Q. Xiao, Y. Liu, P. Ai, Y. Li, and H. Wang: A transparent surface-crystallized Eu2+, Dy3+ co-doped strontium aluminate long-lasting phosphorescent glass-ceramic. J. Alloys Compd. 495, 72 (2010).
E. Gürmen, E. Daniels, and J.S. King: Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction. J. Chem. Phys. 55, 1093 (1971).
S. Shi, X. Liu, J. Gao, and J. Zhou: Spectroscopic properties and intense red-light emission of (Ca, Eu, M)WO4 (M = Mg, Zn, Li). Spectrochim. Acta, Part A 69, 396 (2008).
Y. Zhang, N.A.W. Holzwarth, and R.T. Williams: Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Phys. Rev. B 57, 12738 (1998).
W.M. Yen, S. Shionoya, and H. Yamamoto: Phosphors Handbook, 2nd ed. (CRC Press, Boca Raton, 2006), p. 454.
F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobis, and M-H. Whangbo: Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration. Chem. Mater. 18, 3212 (2006).
Acknowledgment
The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21071034 and 20871033).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, H., Hu, Y., Kang, F. et al. Enhancement on afterglow properties of Eu3+ by Ti4+, Mg2+ incorporation in CaWO4 matrix. Journal of Materials Research 27, 959–964 (2012). https://doi.org/10.1557/jmr.2012.16
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.16