Skip to main content
Log in

Nanoscale titania ceramic composite supports for PEM fuel cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium-based ceramic supports designed for polymer electrolyte membrane fuel cells were synthesized, and catalytic activity was explored using electrochemical analysis. Synthesis of high surface area TiO2 and TiO supports was accomplished by rapidly heating a gel of polyethyleneimine-bound titanium in a tube furnace under a forming gas atmosphere. X-ray diffraction analysis revealed anatase phase formation for the TiO2 materials and crystallite sizes of less than 10 nm in both cases. Subsequent disposition of platinum through an incipient wetness approach leads to highly dispersed crystallites of platinum, less than 6 nm each, on the conductive supports. Scanning Electron Microscope (SEM)/energy dispersive x-ray analysis results showed a highly uniform Ti and Pt distribution on the surface of both materials. The supports without platinum are highly stable to acidic aqueous conditions and show no signs of oxygen reduction reactivity (ORR). However, once the 20 wt% platinum is added to the material, ORR activity comparable to XC-72-based materials is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, and M.A. Inbody: PEM fuel cell electrocatalyst durability measurements. J. Power Sources 163(1), 76 (2006).

    Article  CAS  Google Scholar 

  2. R.L. Borup, F.H. Garzon, D.L. Wood, J.R. Davey, and E.L. Brosha: PEM electrode durability measurements. Presented at Electrochemical Society, Second International Conference on Polymer Batteries and Fuel Cells June 12-17, 2005, Las Vegas, NV (2005).

    Google Scholar 

  3. T.A. Bekkedahl, L.J. Bregoli, R.D. Breault, E.A. Dykeman, J.P. Meyers, T.W. Patterson, T. Skiba, C. Vargas, D.Y. Yang, and S. Jung: Reducing fuel cell cathode potential during startup and shutdown. U.S. Patent No. 20040081866. (2004).

    Google Scholar 

  4. F.H. Garzon, J.R. Davey, and R.L. Borup: Fuel cell catalyst particle size growth characterized by x-ray scattering methods. ECS Trans. 8(1), 153 (2005).

    Google Scholar 

  5. R.L. Borup, J.R. Davey, D. Wood, F. Garzon, M. Inbody, and D. Guidry: PEM Fuel Cell Durability. 2005 DOE Hydrogen Program Review, (Department of Energy, Washington, DC, 2005).

    Google Scholar 

  6. M.S. Wilson, F.H. Garzon, K.E. Sickafus, and S. Gottesfeld: Modeling and experimental diagnostics in polymer electrolyte fuel cells. J. Electrochem. Soc. 140(10), 2872 (1993).

    Article  CAS  Google Scholar 

  7. K.L. More: Microstructural Characterization of Polymer Electrolyte Membrane Fuel Cell Membrane Electrode Assemblies. DOE Annual Report (Department of Energy, Washington, DC, 2005).

    Google Scholar 

  8. F.H. Garzon, J.R. Davey, and R.L. Borup: Fuel cell catalyst particle size growth characterized by x-ray scattering methods. ECS Meeting Abstracts, Vol. MA 2005-02, 2223 (2005).

    Google Scholar 

  9. D. Raistrick: Modified gas diffusion electrode for proton exchange membrane fuel cells, in Proceedings of the Symposium on Diaphragms, Separators, and Ion Exchange Membranes, the Electrochemical Society, edited by J.W. Van Zee, R.E. White, K. Kinoshita, and H.S. Burney (The Electrochemical Society, Inc., Pennington, NJ, 1986); p. 172.

  10. D. Raistrick: Electrode assembly for use in a polymer electrolyte fuel cell. U.S. Patent No. 4,876,115, (1989).

    Google Scholar 

  11. E.A. Ticianelli, C.R. Derouin, and S. Srinivasan: Localization of platinum in low catalyst loading electrodes to attain high-power densities in SPE fuel cells. J. Electroanal. Chem. 251, 275 (1988).

    Article  CAS  Google Scholar 

  12. E.A. Ticianelli, C.R. Derouin, A. Redondo, and S. Srinivasan: Methods to attain high-power densities in solid-polymer electrolyte fuel-cells using low platinum loading electrodes. J. Electrochem. Soc. 135, 2209 (1988).

    Article  CAS  Google Scholar 

  13. M.S. Wilson: Membrane catalyst layer for fuel cells. U.S. Patent No. 5,234,777, (1993).

    Google Scholar 

  14. M.S. Wilson and S. Gottesfeld: High-performance catalyzed membranes of ultra-low pt loadings for polymer electrolyte fuel-cells. J. Electrochem. Soc. 139, L28–L30 (1992).

    Article  CAS  Google Scholar 

  15. M.S. Wilson and S. Gottesfeld: Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes. J. Appl. Electrochem. 22, 1 (1992).

    Article  CAS  Google Scholar 

  16. D.A. Stevens, M.T. Hicks, G.M. Haugen, and J.R. Dahn: Ex situ and in situ stability studies of PEMFC catalysts. J. Electrochem. Soc. 152(12), A2309 (2005).

    Article  CAS  Google Scholar 

  17. F. Coloma, A. Sepulveda-Escribano, and F. Rodriguez-Reinoso: Heat-treated carbon-blacks as supports for platinum catalysts. J. Catal. 154(2), 299 (1995).

    Article  CAS  Google Scholar 

  18. E. Antolini and E.R. Gonzalez: Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics 180, 746 (2009).

    Article  CAS  Google Scholar 

  19. Y. Shao, J. Liu, Y. Wang, and Y. Lin: Novel catalyst support materials or PEM fuel cells: Current status and future prospects. J. Mater. Chem. 19, 46 (2009).

    Article  CAS  Google Scholar 

  20. T. Maiyalagan, B. Viswanathan, and U.V. Varadaraju: Nitrogen containing carbon nanotubes as supports for Pt—alternate anodes for fuel cell applications. Electrochem. Commun. 7(9), 905 (2005).

    Article  CAS  Google Scholar 

  21. A. Kongkanand, S. Kuwubata, G. Girishkumar, and P. Kamat: Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 22(5), 2392 (2006).

    Article  CAS  Google Scholar 

  22. X. Wang, W. Li, Z. Chen, M. Waje, and Y. Yan: Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources 158(1), 154 (2006).

    Article  CAS  Google Scholar 

  23. J. Shim, C. Lee, H. Lee, J. Lee, and E. Cairns: Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell. J. Power Sources 102(1–2), 172 (2001).

    Article  CAS  Google Scholar 

  24. L. Xiong and A. Manthiram: Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel cells. Electrochim. Acta 49(24), 4163 (2004).

    Article  CAS  Google Scholar 

  25. G. Wu, M.A. Nelson, N.H. Mack, S. Ma, P. Sekhar, F.H. Garzon, and P. Zelenay: Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst. Chem. Commun. 46(40), 7489 (2010).

    Article  CAS  Google Scholar 

  26. K.J. Blackmore, L. Elbaz, E. Bauer, E.L. Brosha, K. More, T.M. McCleskey, and A.K. Burrell: High surface area Molybdenum nitride support for fuel cell electrodes. J. Electrochem. Soc. 158(10), B1255 (2011).

    Article  CAS  Google Scholar 

  27. N.M. Markovic, T.J. Schmidt, V. Stamenkovic, and P.N. Ross: Oxygen reduction reaction on Pt and Pt bimetallic surfaces: A selective review. Fuel Cells 1(2), 105 (2001).

    Article  CAS  Google Scholar 

  28. Y. Cai and R.R. Adzic: Platinum monolayer electrocatalysts for the oxygen reduction reaction: Improvements induced by surface and subsurface modifications of cores. Adv. Phys. Chem. 2011, 530397, 1–16 (2011).

    Google Scholar 

Download references

Acknowledgment

We wish to thank the U.S. Department of Energy Hydrogen Program for providing funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lior Elbaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, K.J., Elbaz, L., Bauer, E. et al. Nanoscale titania ceramic composite supports for PEM fuel cells. Journal of Materials Research 27, 2046–2054 (2012). https://doi.org/10.1557/jmr.2012.169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.169

Navigation