Skip to main content
Log in

Oxidation kinetics of copper nanowires synthesized by AC electrodeposition of copper into porous aluminum oxide templates

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Oxidation kinetics of copper nanowires (CuNWs) with diameter 25 ± 4 nm were studied. The dry powder of CuNWs before oxidation comprises 73.2 wt% Cu and 26.8 wt% Cu2O. The oxidation reaction can be divided into two stages at weight of 111.2%. Oxidized CuNWs after Stage 1 consist of Cu2O and CuO. Oxidized CuNWs after Stage 2 comprise CuO only. The activation energies for both stages are determined by Kissinger method and other five isoconversional methods: Flynn–Wall–Osawa, Starink, Kissinger–Akahira–Sunose, Boswell and Friedman differential methods. The isoconversional activation energies determined by Starink method are used to fit different master plots. The Johnson–Mehl–Avrami equation gives the best fit. Surface atoms are the sites for the random nucleation, and the crystallite strain in CuNWs is the driving force for the growth of nuclei during the oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
TABLE I.
FIG. 10.

Similar content being viewed by others

References

  1. M. Mohl, P. Pusztai, A. Kukovecz, Z. Konya, J. Kukkola, K. Kordas, R. Vajtai, and P.M. Ajayan: Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires. Langmuir 26, 16496 (2010).

    Article  CAS  Google Scholar 

  2. J.L. Duan, J. Liu, H.J. Yao, D. Mo, M.D. Hou, Y.M. Suna, Y.F. Chen, and L. Zhang: Controlled synthesis and diameter-dependent optical properties of Cu nanowire arrays. Mater. Sci. Eng., B 147, 57 (2008).

    Article  CAS  Google Scholar 

  3. Y. Shi, H. Li, L.Q. Chen, and H.J. Huang: Obtaining ultra-long copper nanowires via a hydrothermal process. Sci. Technol. Adv. Mater. 6, 761 (2005).

    Article  CAS  Google Scholar 

  4. Z.F. Zhou, Y.C. Zhou, Y. Pan, and X.G. Wang: Growth of the nickel nanorod arrays fabricated using electrochemical deposition on anodized Al templates. Mater. Lett. 62, 3419 (2008).

    Article  CAS  Google Scholar 

  5. D.W. Bridges, J.P. Baur, G.S. Baur, and W.M. Fassell: Oxidation of copper to Cu2O and CuO (600°–1000°C and 0.026–20.4 atm oxygen). J. Electrochem. Soc. 103, 475 (1956).

    Article  CAS  Google Scholar 

  6. W. Gao, H. Gong, J. He, A. Thomas, L. Chan, and S. Li: Oxidation behaviour of Cu thin films on Si wafer at 175–400°C. Mater. Lett. 51, 78 (2001).

    Article  CAS  Google Scholar 

  7. Y.F. Zhu, K. Mimura, J.W. Lim, M. Isshiki, and Q. Jiang: Brief review of oxidation kinetics of copper at 350 °C to 1050 °C. Metall. Mater. Trans. A 37, 1231 (2006).

    Article  Google Scholar 

  8. G.A. Gelves, Z.T.M. Murakami, M.J. Krantz, and J.A. Haber: Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates. J. Mater. Chem. 16, 3075 (2006).

    Article  CAS  Google Scholar 

  9. H.E. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  10. J.H. Flynn and L.A. Wall: A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci., Part B: Polym. Lett. 4, 323 (1966).

    Article  CAS  Google Scholar 

  11. M.J. Starink: A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim. Acta. 288, 97 (1996).

    Article  CAS  Google Scholar 

  12. P.P. Robinson, V. Arun, S. Manju, C.U. Aniz, and K.K.M. Yusuff: Oxidation kinetics of nickel nano crystallites obtained by controlled thermolysis of diaquabis(ethylenediamine) nickel(II) nitrate. J. Therm. Anal. Calorim. 100, 733 (2010).

    Article  CAS  Google Scholar 

  13. H.L. Friedman: New methods for evaluating kinetic parameters from thermal analysis data. J. Polym. Sci., Part B: Polym. Lett. 7, 41 (1969).

    Article  CAS  Google Scholar 

  14. P.G. Boswell: On the calculation of activation energies using a modified Kissinger method. J. Therm. Anal. Calorim. 18, 353 (1980).

    Article  CAS  Google Scholar 

  15. P. Song, D. Wen, Z.X. Guo, and T. Korakianitis: Oxidation investigation of nickel nanoparticles. Phys. Chem. Chem. Phys. 10, 5057 (2008).

    Article  CAS  Google Scholar 

  16. F.J. Gotor, J.M. Criado, J. Malek, and N. Koga: Kinetic analysis of solid-state reactions: The universality of master plots for analyzing isothermal and nonisothermal experiments. J. Phys. Chem. A 104, 10777 (2000).

    Article  CAS  Google Scholar 

  17. J.C. Yang, M.D. Bharadwaj, G. Zhou, and L. Tropia: Surface kinetics of copper oxidation investigated by in situ ultra-high vacuum transmission electron microscopy. Microsc. Microanal. 7, 486 (2001).

    Article  CAS  Google Scholar 

  18. J.C. Yang, M. Yeadon, B. Kolasa, and J.M. Gibson: The homogeneous nucleation mechanism of Cu2O on Cu(001). Scr. Mater. 8, 1237 (1998).

    Article  Google Scholar 

  19. J.C. Yang, M. Yeadon, B. Kolasa, and J.M. Gibson: Oxygen surface diffusion in three-dimensional Cu2O growth on Cu(001) thin films. Appl. Phys. Lett. 70, 3522 (1997).

    Article  CAS  Google Scholar 

  20. Y. Zhu, K. Mimura, and M. Isshiki: Oxidation mechanism of copper at 623-1073 K. Mater. Trans. 43, 2173 (2002).

    Article  CAS  Google Scholar 

  21. A. Yabuki and S. Tanaka: Oxidation behavior of copper nanoparticles at low temperature. Mater. Res. Bull. 46, 2323 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Natural Science and Engineering Research Council of Canada (NSERC) and the Xerox Foundation for the funding of the research. We thank the Microscopy and Imaging Facility (MIF) in University of Calgary for providing the SEM and TEM instruments. Dr. Tobias Fürstenhaupt’s help to collect the TEM images is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttandaraman Sundararaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, X., Sundararaj, U. & Luo, JL. Oxidation kinetics of copper nanowires synthesized by AC electrodeposition of copper into porous aluminum oxide templates. Journal of Materials Research 27, 1755–1762 (2012). https://doi.org/10.1557/jmr.2012.168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.168

Navigation