Skip to main content
Log in

Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: Phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol, and hydronium in phenylated sulfonated poly(ether ether ketone ketone) (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. In Ph-SPEEKK, the average pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower relative to the corresponding properties in Nafion at comparable hydration levels. The aromatic carbon backbone of Ph-SPEEKK is more rigid and less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation in Ph-SPEEKK occurs at a hydration level (λ) of ∼8 H2O/SO3. At λ = 20, water, methanol, and hydronium diffusion coefficients were 1.4 × 10−5, 0.6 × 10−5, and 0.2 × 10−5 cm2/s, respectively. For λ > 20, wide pores develop leading to an increase in methanol crossover and ion transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
TABLE II.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.

Similar content being viewed by others

References

  1. X. Ren, M.S. Wilson, and S. Gottesfeld: High performance direct methanol polymer electrolyte fuel cells. J. Electrochem. Soc. 143, L12 (1996).

    CAS  Google Scholar 

  2. S.K. Kamrudin, F. Achmad, and W.R.W. Daud: Overview of the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrogen Energy 34, 6902 (2009).

    Google Scholar 

  3. A. Heinzel and V.M. Barragan: A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J. Power Sources 84, 70 (1999).

    CAS  Google Scholar 

  4. K.A. Mauritz and R.B. Moore: State of understanding of Nafion. Chem. Rev. 104, 4535 (2004).

    CAS  Google Scholar 

  5. V. Neburchilov, J. Martin, H. Wang, and J. Zhang: A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 169, 221 (2007).

    CAS  Google Scholar 

  6. N.W. Deluca and Y.A. Elabd: Polymer electrolyte membranes for the direct methanol fuel cell: A review. J. Polym. Sci., Part B: Polym. Phys. 44, 2201 (2006).

    CAS  Google Scholar 

  7. K.D. Kreuer: On the development of proton conducting polymer membranes for technological applications. Solid State Ionics 97, 1 (1997).

    CAS  Google Scholar 

  8. K.D. Kreuer: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29 (2001).

    CAS  Google Scholar 

  9. R. Devanathan: Recent developments in proton exchange membranes for fuel cells. Energy Environ. Sci. 1, 101 (2008).

    CAS  Google Scholar 

  10. B. Smitha, S. Sridhar, and A.A. Khan: Solid polymer electrolyte membranes for fuel cell applications—A review. J. Membr. Sci. 259, 10 (2005).

    CAS  Google Scholar 

  11. Q. Li, R. He, J.O. Jensen, and N.J. Bjerrum: Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem. Mater. 15, 4896 (2003).

    CAS  Google Scholar 

  12. G. Alberti, M. Casciola, L. Massinelli, and B. Bauer: Polymeric proton conducting membranes for medium temperature fuel cells (110–160 °C). J. Membr. Sci. 185, 73 (2001).

    CAS  Google Scholar 

  13. W.H.J. Hogarth, J.C. Diniz da Costa, and G.Q. Lu: Solid acid membranes for high temperature (>140 °C) proton exchange membrane fuel cells. J. Power Sources 142, 223 (2005).

    CAS  Google Scholar 

  14. M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, and J.E. McGrath: Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587 (2004).

    CAS  Google Scholar 

  15. R.W. Kopitzke, C.A. Linkous, H.R. Anderson, and G.L. Nelson: Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes. J. Electrochem. Soc. 147, 1677 (2000).

    CAS  Google Scholar 

  16. B. Yang and A. Manthiram: Comparison of the small angle x-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells. J. Power Sources 153, 29 (2006).

    CAS  Google Scholar 

  17. B. Yang and A. Manthiram: Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. Electrochem. Solid-State Lett. 6, A229 (2003).

    CAS  Google Scholar 

  18. R.T.S. Muthulakshmi, V. Choudhary, and I.K. Varma: Sulphonated poly(ether ether ketone): Synthesis and characterisation. J. Mater. Sci. 40, 629 (2005).

    CAS  Google Scholar 

  19. Y. Fu, A. Manthiram, and M.D. Guiver: Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochem. Commun. 8, 1386 (2006).

    CAS  Google Scholar 

  20. P. Knauth, E. Sgreccia, A. Donnadio, M. Casciola, and M.L. Di Vona: Water activity coefficient and proton mobility in hydrated acidic polymers. J. Electrochem. Soc. 158, B159 (2011).

    CAS  Google Scholar 

  21. B. Liu, G.P. Robertson, D-S. Kim, M.D. Guiver, W. Hu, and Z. Jiang: Aromatic poly(ether ketone)s with pendant sulfonic acid phenyl groups prepared by a mild sulfonation method for proton exchange membranes. Macromolecules 40, 1934 (2007).

    CAS  Google Scholar 

  22. B. Liu, Y.S. Kim, W. Hu, G.P. Robertson, B.S. Pivovar, and M.D. Guiver: Homopolymer-like sulfonated phenyl- and diphenyl-poly(arylene ether ketone)s for fuel cell applications. J. Power Sources 185, 899 (2008).

    CAS  Google Scholar 

  23. J.A. Elliott, S. Hanna, A.M.S. Elliott, and G.E. Cooley: Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes. Phys. Chem. Chem. Phys. 1, 4855 (1999).

    CAS  Google Scholar 

  24. A. Vishnyakov and A.V. Neimark: Molecular simulation study of Nafion membrane solvation in water and methanol. J. Phys. Chem. B 104, 4471 (2000).

    CAS  Google Scholar 

  25. E. Spohr, P. Commer, and A.A. Kornyshev: Enhancing proton mobility in polymer electrolyte membranes: Lessons from molecular dynamics simulations. J. Phys. Chem. B 106, 10560 (2002).

    CAS  Google Scholar 

  26. S.S. Jang, V. Molinero, T. Cagin, and W.A. Goddard III: Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations: Effect of monomeric sequence. J. Phys. Chem. B 108, 3149 (2004).

    CAS  Google Scholar 

  27. S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki, and M. Mikami: Molecular dynamics simulation of swollen membrane of perfluorinated ionomer. J. Phys. Chem. B 109, 4269 (2005).

    CAS  Google Scholar 

  28. A. Venkatnathan, R. Devanathan, and M. Dupuis: Atomistic simulations of hydrated Nafion and temperature effects on hydronium ion mobility. J. Phys. Chem. B 111, 7234 (2007).

    CAS  Google Scholar 

  29. R. Devanathan, A. Venkatnathan, and M. Dupuis: Atomistic simulation of Nafion membrane. I Effect of hydration on membrane nanostructure. J. Phys. Chem. B 111, 8069 (2007).

    CAS  Google Scholar 

  30. R. Devanathan, A. Venkatnathan, and M. Dupuis: Atomistic simulation of Nafion membrane. 2. Dynamics of water molecules and hydronium ions. J. Phys. Chem. B 111, 8069 (2007).

    CAS  Google Scholar 

  31. S. Cui, J. Liu, M.E. Selvan, D.J. Keffer, B.J. Edwards, and W.V. Steele: A molecular dynamics study of a Nafion polyelectrolyte membrane and the aqueous phase structure for proton transport. J. Phys. Chem. B 111, 2208 (2007).

    CAS  Google Scholar 

  32. S. Cui, J. Liu, M.E. Selvan, S.J. Paddison, D.J. Keffer, and B.J. Edwards: Comparison of the hydration and diffusion of protons in perfluorosulfonic acid membranes with molecular dynamics simulations. J. Phys. Chem. B 112, 13273 (2008).

    CAS  Google Scholar 

  33. J. Liu, N. Suraweera, D.J. Keffer, S. Cui, and S.J. Paddison: On the relationship between polymer electrolyte structure and hydrated morphology of perfluorosulfonic acid membranes. J. Phys. Chem. C 114, 11279 (2010).

    CAS  Google Scholar 

  34. I.H. Hristov, S.J. Paddison, and R. Paul: Molecular modeling of proton transport in the short-side-chain perfluorosulfonic acid ionomer. J. Phys. Chem. B 112, 2937 (2008).

    CAS  Google Scholar 

  35. J. Karo, A. Aabloo, J.O. Thomas, and D. Brandell: Molecular dynamics modeling of proton transport in Nafion and Hyflon nanostructures. J. Phys. Chem. B 114, 6056 (2010).

    CAS  Google Scholar 

  36. C.K. Knox and G.A. Voth: Probing selected morphological models of hydrated Nafion using large-scale molecular dynamics simulations J. Phys. Chem. B 114, 3205 (2010).

    CAS  Google Scholar 

  37. R. Devanathan, A. Venkatnathan, R. Rousseau, M. Dupuis, T. Frigato, W. Gu, and V. Helms: Atomistic simulation of water percolation and proton hopping in Nafion fuel cell membrane. J. Phys. Chem. B 114, 13681 (2010).

    CAS  Google Scholar 

  38. S. Feng and G.A. Voth: Proton solvation and transport in hydrated Nafion. J. Phys. Chem. B 115, 5903 (2011).

    CAS  Google Scholar 

  39. G. Brunello, S.G. Lee, S.S. Jang, and Y. Qi: A molecular dynamics simulation study of hydrated sulfonated poly(ether ether ketone) for application to polymer electrolyte membrane fuel cells: Effect of water content. J. Renewable Sustainable Energy 1, 033101 (2009).

    Google Scholar 

  40. G.F. Brunello, W.R. Mateker, S.G. Lee, J.I. Choi, and S.S. Jang: Effect of temperature on structure and water transport of hydrated sulfonated poly(ether ether ketone): A molecular dynamics approach. J. Renewable Sustainable Energy 3, 043111 (2011).

    Google Scholar 

  41. P.V. Komarov, I.N. Veselov, P.P. Chu, P.G. Khalatur, and A.R. Khokhlov: Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone). Chem. Phys. Lett. 487, 291 (2010).

    CAS  Google Scholar 

  42. C.V. Mahajan and V. Ganesan: Atomistic simulations of structure of solvated sulfonated poly(ether ether ketone) membranes and their comparisons to Nafion: I. Nanophase segregation and hydrophilic domains. J. Phys. Chem. B 114, 8357 (2010).

    CAS  Google Scholar 

  43. C.V. Mahajan and V. Ganesan: Atomistic simulations of structure of solvated sulfonated poly(ether ether ketone) membranes and their comparisons to Nafion: II. Structure and transport properties of water, hydronium ions, and methanol. J. Phys. Chem. B 114, 8367 (2010).

    CAS  Google Scholar 

  44. R.D. Lins, R. Devanathan, and M. Dupuis: Modeling of nanophase structural dynamics of phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) membranes as a function of hydration. J. Phys. Chem. B 115, 1817 (2011).

    CAS  Google Scholar 

  45. T.D. Astill: Factors influencing electrochemical properties and performance of hydrocarbon based ionomer PEMFC catalyst layers. Ph.D. Thesis, Simon Fraser University, Burnaby, Canada, 2008.

    Google Scholar 

  46. S.L. Mayo, B.D. Olafson, and W.A. Goddard: DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 94, 8897 (1990).

    CAS  Google Scholar 

  47. S.S. Jang, M. Blanco, W.A. Goddard III, G. Caldwell, and R.B. Ross: The source of helicity in perfluorinated N-alkanes. Macromolecules. 36, 5331 (2003).

    CAS  Google Scholar 

  48. M. Levitt, M. Hirshberg, R. Sharon, K.E. Laidig, and V. Daggett: Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution. J. Phys. Chem. B 25, 5051 (1997).

    Google Scholar 

  49. W.L. Jorgensen, D.S. Maxwell, and J. Tirado-Rives: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225 (1996).

    CAS  Google Scholar 

  50. I.T. Todorov, W. Smith, K. Trachenko, and M.T. Dove: DL_POLY_3: New dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 16, 1911 (2006).

    CAS  Google Scholar 

  51. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995).

    CAS  Google Scholar 

  52. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).

    CAS  Google Scholar 

  53. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak: Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).

    CAS  Google Scholar 

  54. W. Humphrey, A. Dalke, and K. Schulten: VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33 (1996).

    CAS  Google Scholar 

  55. M.D. Rintoul and S. Torquato: Precise determination of the critical threshold and exponents in a 3D continuum percolation model. J. Phys. A: Math. Gen. 30, L585 (1997).

    CAS  Google Scholar 

  56. S. Bhattacharya and K.E. Gubbins: Fast method for computing pore size distributions of model materials. Langmuir 22, 7726 (2006).

    CAS  Google Scholar 

  57. F. Kappel and A. Kuntsevich: An implementation of Shor’s r-algorithm. Comput. Optim. Appl. 15, 193 (2000).

    Google Scholar 

  58. R. Devanathan and M. Dupuis: Insight from molecular modelling: Does the polymer side chain length matter for transport properties of perfluorosulfonic acid membranes? Phys. Chem. Chem. Phys. (2012, in press).

    Google Scholar 

  59. B. Mecheri, A. D’Epifanio, E. Traversa, and S. Licoccia: Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications. J. Power Sources 178, 554 (2008).

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, under Contract DE-AC05-76RL01830. It was performed in part using the Molecular Science Computing Facility in the EMSL, a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE. This work benefited from resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of DOE under Contract No. DE-AC02-05CH1123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Devanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devanathan, R., Idupulapati, N. & Dupuis, M. Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: Phenylated sulfonated poly(ether ether ketone ketone) versus Nafion. Journal of Materials Research 27, 1927–1938 (2012). https://doi.org/10.1557/jmr.2012.165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.165

Navigation