Skip to main content
Log in

The reduced modulus in the analysis of sharp instrumented indentation tests

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the analysis of instrumented indentation data, it is common practice to incorporate the combined moduli of the indenter (Ei) and the specimen (E) in the so-called reduced modulus (Er) to account for indenter deformation. Although indenter systems with rigid or elastic tips are considered as equivalent if Er is the same, the validity of this practice has been questioned over the years. The present work uses systematic finite element simulations to examine the role of the elastic deformation of the indenter tip in instrumented indentation measurements and the validity of the concept of the reduced modulus in conical and pyramidal (Berkovich) indentations. It is found that the apical angle increases as a result of the indenter deformation, which influences in the analysis of the results. Based upon the inaccuracies introduced by the reduced modulus approximation in the analysis of the unloading segment of instrumented indentation applied load (P)–penetration depth (δ) curves, a detailed examination is then conducted on the role of indenter deformation upon the dimensionless functions describing the loading stages of such curves. Consequences of the present results in the extraction of the uniaxial stress–strain characteristics of the indented material through such dimensional analyses are finally illustrated. It is found that large overestimations in the assessment of the strain hardening behavior result by neglecting tip compliance. Guidelines are given in the paper to reduce such overestimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
TABLE II.
FIG. 1
FIG. 2
FIG. 3
TABLE III.
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  3. O. Casals and J. Alcalá: The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments. Acta Mater. 53, 3545 (2005).

    Article  CAS  Google Scholar 

  4. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  5. S.A. Rodríguez, R.M. Souza, and J. Alcalá: A critical reassessment of the elastic unloading in sharp instrumented indentation experiments: Mechanical properties extraction. Philos. Mag. 91, 1409 (2011).

    Article  CAS  Google Scholar 

  6. M.M. Chaudhri: A note on a common mistake in the analysis of nanoindentation data. J. Mater. Res. 16, 336 (2001).

    Article  CAS  Google Scholar 

  7. Y.Y. Lim and M.M. Chaudhri: Experimental investigations of the normal loading of elastic spherical and conical indenters on to elastic flats. Philos. Mag. 83, 3427 (2003).

    Article  CAS  Google Scholar 

  8. S.M. Jeong and H.L. Lee: Finite element analysis of the tip deformation effect on nanoindentation hardness. Thin Solid Films 492, 173–179 (2005).

    Article  CAS  Google Scholar 

  9. A.C. Ficher-Cripps: Use of combined elastic modulus in depth-sensing indentation with a conical indenter. J. Mater. Res. 18, 1043–1045 (2003).

    Article  Google Scholar 

  10. Y.Y. Lim and M.M. Chaudhri: Indentation of elastic solids with rigid cones. Philos. Mag. 84, 2877–2903 (2004).

    Article  CAS  Google Scholar 

  11. I. Choi, O. Kraft, and R. Schwaiger: Validity of the reduced modulus concept to describe indentation loading response for elastoplastic materials with sharp indenters. J. Mater. Res. 24, 998–1006 (2009).

    Article  CAS  Google Scholar 

  12. M. Troyon and L.Y. Huang: Correction factor for contact area in nanoindentation measurements. J. Mater. Res. 20, 610–617 (2005).

    Article  CAS  Google Scholar 

  13. M.G.J. Veprek-Heijman, R.G. Veprek, A.S. Argon, D.M. Parks, and S. Veprek: Non-linear finite element constitutive modeling of indentation into super- and ultrahard materials: The plastic deformation of the diamond tip and the ratio of hardness to tensile yield strength of super- and ultrahard nanocomposites. Surf. Coat. Technol. 203, 3385–3391 (2009).

    Article  CAS  Google Scholar 

  14. K.W. McElhaney, J.J. Vlassak, and W.D. Nix: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300–1306 (1998).

    Article  CAS  Google Scholar 

  15. J. Gong, H. Miao, and Z. Peng: On the contact area for nanoindentation tests with Berkovich indenter: Case study on soda-lime glass. Mater. Lett. 58, 1349–1353 (2004).

    Article  CAS  Google Scholar 

  16. Y.P. Cao, M. Dao, and J. Lu: A precise correcting method for the study of the superhard material using nanoindentation tests. J. Mater. Res. 22, 1255–1264 (2007).

    Article  CAS  Google Scholar 

  17. A.E.H Love: Boussinesq’s problem for a rigid cone. Q. J. Math. 10, 161–175 (1939).

    Article  Google Scholar 

  18. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965).

    Article  Google Scholar 

  19. S.I. Bulychev, V.P. Alekhin, M.Kh. Shorshorov, A.P. Ternovskii, and G.D. Shnyrev: Determining Young’s modulus from the indenter penetration diagram. Ind. Lab., 41, 1409–1412 (1975).

    Google Scholar 

  20. J.C. Hay, A. Bolshakov, and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296–2305 (1999).

    Article  CAS  Google Scholar 

  21. S.A. Rodríguez, M.C. Farias, and R.M. Souza: Finite element and dimensional analysis algorithm for the prediction of mechanical properties of bulk materials and thin films. Surf. Coat. Technol. 205, 1386–1392 (2010).

    Article  CAS  Google Scholar 

  22. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R. 44, 91–149 (2004).

    Article  Google Scholar 

  23. J. Alcalá and D. Esqué-De Los Ojos: Reassessing spherical indentation: Contact regimes and mechanical property extractions. Int. J. Solids Struct. 47, 2714–2732 (2010).

    Article  CAS  Google Scholar 

  24. M. Mata and J. Alcalá: The role of friction on sharp indentation. J. Mech. Phys. Solids 52, 145 (2004).

    Article  Google Scholar 

  25. E. Harsono, S. Swaddiwudhipong, and Z.S. Liu: The effect of friction on indentation test results. Modell. Simul. Mater. Sci. Eng. 16, 065001 (2008).

    Article  Google Scholar 

  26. S.A. Rodríguez, M.C. Farias, and R.M. Souza: Analysis of the tip roundness effects on the micro- and macroindentation response of elastic-plastic materials. J. Mater. Res. 24, 1037–1044 (2009).

    Article  Google Scholar 

  27. S.A. Rodríguez, M.C. Farias, and R.M. Souza: Analysis of the effects of conical indentation variables on the indentation response of elastic-plastic materials through factorial design of experiment. J. Mater. Res. 24, 1222–1234 (2009).

    Article  Google Scholar 

  28. C.E.K Mady, S.A. Rodríguez, A.G. Gómez, and R.M. Souza: Effects of mechanical properties, residual stress and indenter tip geometry on instrumented indentation data in thin films. Surf. Coat. Technol. 205, 1393–1397 (2010).

    Article  CAS  Google Scholar 

  29. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).

    Article  CAS  Google Scholar 

  30. Y. Sun, S. Zheng, T. Bell, and J. Smith: Indenter tip radius and load frame compliance calibration using nanoindentation loading curves. Philos. Mag. Lett. 79, 649–658 (1999).

    Article  CAS  Google Scholar 

  31. Y.T. Cheng and C.M. Cheng: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614–616 (1998).

    Article  CAS  Google Scholar 

  32. Y.P. Cao, X.Q. Qian, J. Lu, and Z.H. Yao: An energy-based method to extract plastic properties of metal materials from conical indentation tests. J. Mater. Res. 20, 1194–1206 (2005).

    Article  CAS  Google Scholar 

  33. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657–1664 (1987).

    Article  Google Scholar 

  34. S.A. Rodríguez: Modelamento do Ensaio de Indentação Instrumentada Usando Elementos Finitos e Análise Dimensional–Análise de Unicidade, Variações Experimentais, Atrito e Geometria e Deformações do Indentador. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2010.

    Book  Google Scholar 

  35. O. Casals, J. Ocenasek, and J. Alcalá: Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals. Acta Mater. 55, 55–68 (2007).

    Article  CAS  Google Scholar 

  36. J. Alcalá, D. Esque-De Los Ojos, and S.A. Rodríguez: The role of crystalline anisotropy in mechanical property extractions through Berkovich indentation. J. Mater. Res. 24, 1235–1244 (2009).

    Article  Google Scholar 

  37. S.A. Rodríguez, J. Alcalá, and R.M. Souza: Effects of elastic indenter deformation on spherical instrumented indentation tests: The reduced elastic modulus. Philos. Mag. 91, 7–9 (2010).

    Google Scholar 

  38. M. Mata and J. Alcalá: Mechanical property evaluation through sharp indentations in elastoplastic and fully plastic contact regimes. J. Mater. Res. 18, 1705–1709 (2003).

    Article  CAS  Google Scholar 

  39. O. Casals, J. Alcalá, and J. Očenášek: Micromechanics of pyramidal indentation in fcc metals: Single crystal plasticity finite element analysis. J. Mech. Phys. Solids 56, 3277–3303 (2008).

    Article  CAS  Google Scholar 

  40. N.A. Sakharova, J.V. Fernandes, J.M. Antunes, and M.C. Oliveira: Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study. Int. J. Solids Struct. 46, 1095–1104 (2009).

    Article  Google Scholar 

  41. S. Swaddiwudhipong, J. Hua, K.K. Tho, and Z.S. Liu: Equivalency of Berkovich and conical load-indentation curves. Modell. Simul. Mater. Sci. Eng. 14, 71–82 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the CNPq under Contract No. 141259/2007-8 and by the Spanish Ministry of Education and Science through Project MAT2008-01647/MAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara A. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, S.A., Alcalá, J. & Souza, R.M. The reduced modulus in the analysis of sharp instrumented indentation tests. Journal of Materials Research 27, 2148–2160 (2012). https://doi.org/10.1557/jmr.2012.164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.164

Navigation