Skip to main content

Advertisement

Log in

Effect of radio frequency sputtering power on W–TiO2 nanotubes to improve photoelectrochemical performance

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present study aims to determine the optimum radio frequency (RF) sputtering power to obtain the desired W–TiO2 nanotubes for the best photoelectrochemical (PEC) performance. Tungsten (W) was deposited on titania (TiO2) nanotube arrays via RF sputtering technique under different sputtering powers from 50 to 250 W. The optimum content of W on TiO2 nanotube arrays play a significant role in maximizing the photocurrent generation efficiency to promote charge separation by accumulation of photogenerated electrons. The sputtering power below 180 W exhibited high-ordered and unbroken TiO2 nanotube arrays. However, the sputtering power over 180 W exhibited broken nanotube arrays and an oxide layer was formed due to the impact of high energy ions accelerated by a high sputtering power. The TiO2 nanotube arrays sputtered with tungsten at 50 W showed a better photocurrent density (1.55 mA/cm2), with a photoconversion efficiency of 2.2% in the PEC performance among the samples due to the effective charge separation and reduced recombination center in the resultant W–TiO2 nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE I.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
TABLE II.

Similar content being viewed by others

References

  1. J. Ohi: Hydrogen energy cycle: An overview. J. Mater. Res. 20, 3167 (2005).

    Article  Google Scholar 

  2. E.Y. Kim, J.H. Park, and G.Y. Han: Design of TiO2 nanotube array-based water-splitting reactor for hydrogen generation. J. Power Sources 184, 284 (2008).

    Article  CAS  Google Scholar 

  3. K. Yu and J. Chen: Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res. Lett. 4, 1 (2009).

    Article  CAS  Google Scholar 

  4. M. Kitano, M. Matsuoka, M. Ueshima, and M. Anpo: Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A-Gen. 325, 1 (2007).

    Article  CAS  Google Scholar 

  5. K. Takahashi, M. Uno, M. Okui, and S. Yamanaka: Photoelectrochemical properties and band structure of oxide films on zirconium–transition metal alloys. J. Alloy Compd. 421, 303 (2006).

    Article  CAS  Google Scholar 

  6. Z.Y. Liu, Q.Q. Zhang, T.Y. Zhao, J. Zhai, and L. Jiang: 3-D vertical arrays of TiO2 nanotubes on Ti meshes: Efficient photoanodes for water photoelectrolysis. J. Mater. Chem. 21, 10354 (2011).

    Article  CAS  Google Scholar 

  7. G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, and C.A. Grimes: A room-temeperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).

    Article  CAS  Google Scholar 

  8. Z. Zhang, M.F. Hossain, and T. Takahashi: Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int. J. Hydrogen Energ. 35, 8528 (2010).

    Article  CAS  Google Scholar 

  9. M. Fernandez-Garcia, A. Martinez-Arias, A. Fuerte, and J.C. Conesa: Nanostructured Ti-W mixed-metal oxides: Structural and electronic properties. J. Phys. Chem. B 109, 6075 (2005).

    Article  CAS  Google Scholar 

  10. B. Marsen, E.L. Miller, D. Paluselli, and R.E. Rocheleau: Progress in sputtered tungsten trioxide for photoelectrode applications. Int. J. Hydrogen Energ. 32, 3110 (2007).

    Article  CAS  Google Scholar 

  11. K. Zhu, T.B. Vinzant, N.R. Neale, and A.J. Frank: Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano lett. 7, 3739 (2007).

    Article  CAS  Google Scholar 

  12. A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, and J. Zhang: One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity. Appl. Catal. B Environ. 91, 397 (2009).

    Article  CAS  Google Scholar 

  13. Y. Cong, J.L. Zhang, F. Chen, and M. Anpo: Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111, 6976 (2007).

    Article  CAS  Google Scholar 

  14. W.K. Ho, J.C. Yu, and S.C. Lee: Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun. 111, 1115 (2006).

    Article  CAS  Google Scholar 

  15. S.K. Mohapatra, V.K. Mahajan, and M. Misra: Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting. Nanotechnology 18, 445705 (2007).

    Article  CAS  Google Scholar 

  16. S.K. Parayil, Y.M. Lee, and M. Yoon: Photoelectrochemical solar cell properties of heteropolytungstic acid-incorporated TiO2 nanodisc thin films. Electrochem. Commun. 11, 1211 (2009).

    Article  CAS  Google Scholar 

  17. R. Dholam, N. Patel, M. Adami, and A. Miotello: Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting. Int. J. Hydrogen Energ. 34, 5337 (2009).

    Article  CAS  Google Scholar 

  18. A. Fujishima, X. Zhang, and D.A. Tryk: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).

    Article  CAS  Google Scholar 

  19. Y. Xie, L. Zhou, and J. Lu: Photoelectrochemical behavior of titania nanotube array grown on nanocrystalline titanium. J. Mater. Sci. 44, 2907 (2009).

    Article  CAS  Google Scholar 

  20. T. Hathway, E.M. Rockafellow, Y.C. Oh, and W.S. Jenks: Photocatalytic degradation using tungsten-modified TiO2 and visible light: Kinetic and mechanistic effect using multiple catalyst doping strategies. J. Photoch. Photobio. A Chem. 207, 197 (2009).

    Article  CAS  Google Scholar 

  21. M. Ni, K.H. Leung, D.Y.C. Leung, and K. Sumathy: A review and recent development in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 11, 401 (2007).

    Article  CAS  Google Scholar 

  22. Q. Cai, M. Paulose, O.K. Varghese, and C.A. Grimes: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005).

    Article  CAS  Google Scholar 

  23. D. Gong, C.A. Grimes, and O.K. Varghese: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).

    Article  CAS  Google Scholar 

  24. X. Liu, T.F. Jaramillo, A. Kolmakov, S.H. Baeck, M. Moskovits, G.D. Stucky, and E.W. McFarland: Synthesis of Au nanoclusters supported upon a TiO2 nanotube array. J. Mater. Res. 20, 1093 (2005).

    Article  CAS  Google Scholar 

  25. S. Higashimoto, Y. Ushiroda, and M. Azuma: Electrochemically assisted photocatalysis of hybrid WO3/TiO2 films: Effect of the WO3 structures on charge separation behavior. Top. Catal. 47, 148 (2008).

    Article  CAS  Google Scholar 

  26. J. Wang, Y. Han, M. Feng, J. Chen, X. Li, and S. Zhang: Preparation and photoelectrochemical characterization of WO3/TiO2 nanotube array electrode. J. Mater. Sci. 46, 416 (2011).

    Article  CAS  Google Scholar 

  27. D. Ke, H. Liu, T. Peng, X. Liu, and K. Dai: Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles. Mater. Lett. 62, 447 (2008).

    Article  CAS  Google Scholar 

  28. A.K.L. Sajjad, S. Shamaiila, B.Z. Tian, F. Chen, and J.L. Zhang: Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J. Hazard. Mater. 177, 781 (2010).

    Article  CAS  Google Scholar 

  29. C.H. Choi, W.I. Cho, B.W. Cho, H.S. Kim, Y.S. Yoon, and Y.S. Tak: Radio frequency magnetron sputtering power effect on the ionic conductivities of lipon films. Electrochem. Solid St. 5, 14 (2002).

    Article  Google Scholar 

  30. S. Zhang, D. Sun, Y. Fu, H. Du, and Q. Zhang: Effect of sputtering target power density on topography and residual stress during growth of nanocomposite nc-TiN/a-SiNx thin films. Diam. Relat. Mater. 13, 1777 (2004).

    Article  CAS  Google Scholar 

  31. K. Kim, M. Park, W. Lee, H.W. Kim, J.G. Lee, and C. Lee: Effects of sputtering power on mechanical properties of Cr films deposited by magnetron sputtering. Mater. Sci. Tech. Ser. 24, 838 (2008).

    Article  CAS  Google Scholar 

  32. B.S. Liu, Q.H.L. Wen, and X.J. Zhao: The effect of sputtering power on the structure and photocatalytic activity of TiO2 films prepared by magnetron sputtering. Thin Solid Films 517, 6569 (2009).

    Article  CAS  Google Scholar 

  33. K.C. Aw, Z. Tsakadze, A. Lohani, and S. Mhaisalkar: Influence of radio frequency sputtering power towards the properties of indium zinc oxide semiconducting films. Scr. Mater. 60, 48 (2009).

    Article  CAS  Google Scholar 

  34. S. Sreekantan, C.W. Lai, and Z. Lockman: Extremely fast growth rate of TiO2 nanotube arrays in electrochemical bath containing H2O2. J. Electrochem. Soc. 158, C1 (2011).

    Article  CAS  Google Scholar 

  35. C. Batista, R. Ribeiro, J. Carneiro, and V. Teixeira: DC sputtered W-doped VO2 thermochromic thin films for smart windows with active solar control. J. Nanosci. Nanotechnol. 9, 4220 (2009).

    Article  CAS  Google Scholar 

  36. C.W. Lai and S. Sreekantan: Comparison of photocatalytic and photoelecttrochemical behavior of TiO2 nanotubes prepared by different organic electrolyte. Optoelectron. Adv. Mat. 6, 82 (2012).

    CAS  Google Scholar 

  37. S. Sreekantan, R. Hazan, and Z. Lockman: Photoactivity of anatase-rutile TiO2 nanotubes formed by anodization method. Thin Solid Films 518, 16 (2009).

    Article  CAS  Google Scholar 

  38. G. Mor, O. Varghese, M. Paulose, K. Shankar, and C. Grimes: A review on highly ordered vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energ. Mat. Sol. C 90, 2011 (2006).

    Article  CAS  Google Scholar 

  39. V.K. Mahajan, M. Misra, K.S. Raja, and S.K. Mohapatra: Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: Effect of crystallization and defect structures, J. Phys. D: Appl. Phys. 41, 125307 (2008).

    Article  CAS  Google Scholar 

  40. K.S. Ahn, S.H. Lee, A.C. Dillon, E. Tracy, and R. Pitts: The effect of thermal annealing on photoelectrochemical responses of WO3 thin films. J. Appl. Phys. 101, 093524 (2007).

    Article  CAS  Google Scholar 

  41. L.D. Sun, S. Zhang, X.W. Sun, and X.D. He: Effect of geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10, 4551 (2010).

    Article  CAS  Google Scholar 

  42. A. Sclafani and J.M. Herrmann: Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous method. J. Photochem. Photobiol. A 113, 181 (1998).

    Article  CAS  Google Scholar 

  43. J. Jaturong, P. Sarapong, S. Yoshikazu, and Y. Susumu: Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method. J. Solid State Chem. 180, 1743 (2007).

    Article  CAS  Google Scholar 

  44. X.L. Yang, W.L. Dai, C.W. Guo, H. Chen, Y. Cao, H.X. Li, H.Y. He, and K.N. Fan: Synthesis of novel core-shell structured WO3/TiO2 spheroids and its applications in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. J. Catal. 234, 438 (2005).

    Article  CAS  Google Scholar 

  45. S. Komornicki, M. Radecka, and P. Sobas: Structural, electrical and optical properties of TiO2-WO3 polycrystalline ceramics. Mater. Res. Bull. 39, 2007 (2004).

    Article  CAS  Google Scholar 

  46. S.A.K. Leghari, S. Sajjad, F. Chen, and J. Zhang: WO3/TiO2 composites with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst, Chem. Eng. J. 166, 906 (2011).

    Article  CAS  Google Scholar 

  47. J. Gong, C.Z. Yang, W. Pu, and J. Zhang: Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate, Chem. Eng. J. 167, 190 (2011).

    Article  CAS  Google Scholar 

  48. N. Couselo, F.S.G. Einschlag, R.J. Candal, and M. Jobbagy: Tungsten-doped TiO2 vs pure TiO2 photocatalysts: Effects on photobleaching kinetics and mechanism, J. Phys. Chem. C 112, 1094 (2008).

    Article  CAS  Google Scholar 

  49. D.S. Kim, J.H. Yang, S. Balaji, H.J. Cho, M.K. Kim, D.U. Kang, Y. Djaoued, and Y.U. Kwon: Hydrothermal synthesis of anatase nanocrystals with lattice and surface doping tungsten species, Cryst. Eng. Comm. 11, 1621 (2009).

    Article  CAS  Google Scholar 

  50. A.M. Marquez, J.J Plata, Y. Ortega, and J.F. Sanz: Structural defects in W-doped TiO2 (101) anatase surface: Density functional study, J. Phys. Chem. C 115, 16970 (2011).

    Article  CAS  Google Scholar 

  51. C.A. Grimes: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17, 1451 (2007).

    Article  CAS  Google Scholar 

  52. C.W. Lai and S. Sreekantan: Effect of applied potential on the formation of self-organized TiO2 nanotube arrays and its photoelectrochemical response. J. Nanomater. 2011, 142463 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Universiti Sains Malaysia for sponsoring this work under RU Grant 814075, PRGS Grant 8044058, Fellowship USM and Research University Postgraduate Research Grant Scheme, 80430146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srimala Sreekantan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, C.W., Sreekantan, S. & San E, P. Effect of radio frequency sputtering power on W–TiO2 nanotubes to improve photoelectrochemical performance. Journal of Materials Research 27, 1695–1704 (2012). https://doi.org/10.1557/jmr.2012.163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.163

Navigation