Abstract
The present study aims to determine the optimum radio frequency (RF) sputtering power to obtain the desired W–TiO2 nanotubes for the best photoelectrochemical (PEC) performance. Tungsten (W) was deposited on titania (TiO2) nanotube arrays via RF sputtering technique under different sputtering powers from 50 to 250 W. The optimum content of W on TiO2 nanotube arrays play a significant role in maximizing the photocurrent generation efficiency to promote charge separation by accumulation of photogenerated electrons. The sputtering power below 180 W exhibited high-ordered and unbroken TiO2 nanotube arrays. However, the sputtering power over 180 W exhibited broken nanotube arrays and an oxide layer was formed due to the impact of high energy ions accelerated by a high sputtering power. The TiO2 nanotube arrays sputtered with tungsten at 50 W showed a better photocurrent density (1.55 mA/cm2), with a photoconversion efficiency of 2.2% in the PEC performance among the samples due to the effective charge separation and reduced recombination center in the resultant W–TiO2 nanotubes.
Similar content being viewed by others
References
J. Ohi: Hydrogen energy cycle: An overview. J. Mater. Res. 20, 3167 (2005).
E.Y. Kim, J.H. Park, and G.Y. Han: Design of TiO2 nanotube array-based water-splitting reactor for hydrogen generation. J. Power Sources 184, 284 (2008).
K. Yu and J. Chen: Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res. Lett. 4, 1 (2009).
M. Kitano, M. Matsuoka, M. Ueshima, and M. Anpo: Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A-Gen. 325, 1 (2007).
K. Takahashi, M. Uno, M. Okui, and S. Yamanaka: Photoelectrochemical properties and band structure of oxide films on zirconium–transition metal alloys. J. Alloy Compd. 421, 303 (2006).
Z.Y. Liu, Q.Q. Zhang, T.Y. Zhao, J. Zhai, and L. Jiang: 3-D vertical arrays of TiO2 nanotubes on Ti meshes: Efficient photoanodes for water photoelectrolysis. J. Mater. Chem. 21, 10354 (2011).
G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, and C.A. Grimes: A room-temeperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).
Z. Zhang, M.F. Hossain, and T. Takahashi: Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int. J. Hydrogen Energ. 35, 8528 (2010).
M. Fernandez-Garcia, A. Martinez-Arias, A. Fuerte, and J.C. Conesa: Nanostructured Ti-W mixed-metal oxides: Structural and electronic properties. J. Phys. Chem. B 109, 6075 (2005).
B. Marsen, E.L. Miller, D. Paluselli, and R.E. Rocheleau: Progress in sputtered tungsten trioxide for photoelectrode applications. Int. J. Hydrogen Energ. 32, 3110 (2007).
K. Zhu, T.B. Vinzant, N.R. Neale, and A.J. Frank: Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano lett. 7, 3739 (2007).
A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, and J. Zhang: One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity. Appl. Catal. B Environ. 91, 397 (2009).
Y. Cong, J.L. Zhang, F. Chen, and M. Anpo: Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111, 6976 (2007).
W.K. Ho, J.C. Yu, and S.C. Lee: Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun. 111, 1115 (2006).
S.K. Mohapatra, V.K. Mahajan, and M. Misra: Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting. Nanotechnology 18, 445705 (2007).
S.K. Parayil, Y.M. Lee, and M. Yoon: Photoelectrochemical solar cell properties of heteropolytungstic acid-incorporated TiO2 nanodisc thin films. Electrochem. Commun. 11, 1211 (2009).
R. Dholam, N. Patel, M. Adami, and A. Miotello: Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting. Int. J. Hydrogen Energ. 34, 5337 (2009).
A. Fujishima, X. Zhang, and D.A. Tryk: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).
Y. Xie, L. Zhou, and J. Lu: Photoelectrochemical behavior of titania nanotube array grown on nanocrystalline titanium. J. Mater. Sci. 44, 2907 (2009).
T. Hathway, E.M. Rockafellow, Y.C. Oh, and W.S. Jenks: Photocatalytic degradation using tungsten-modified TiO2 and visible light: Kinetic and mechanistic effect using multiple catalyst doping strategies. J. Photoch. Photobio. A Chem. 207, 197 (2009).
M. Ni, K.H. Leung, D.Y.C. Leung, and K. Sumathy: A review and recent development in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 11, 401 (2007).
Q. Cai, M. Paulose, O.K. Varghese, and C.A. Grimes: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005).
D. Gong, C.A. Grimes, and O.K. Varghese: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).
X. Liu, T.F. Jaramillo, A. Kolmakov, S.H. Baeck, M. Moskovits, G.D. Stucky, and E.W. McFarland: Synthesis of Au nanoclusters supported upon a TiO2 nanotube array. J. Mater. Res. 20, 1093 (2005).
S. Higashimoto, Y. Ushiroda, and M. Azuma: Electrochemically assisted photocatalysis of hybrid WO3/TiO2 films: Effect of the WO3 structures on charge separation behavior. Top. Catal. 47, 148 (2008).
J. Wang, Y. Han, M. Feng, J. Chen, X. Li, and S. Zhang: Preparation and photoelectrochemical characterization of WO3/TiO2 nanotube array electrode. J. Mater. Sci. 46, 416 (2011).
D. Ke, H. Liu, T. Peng, X. Liu, and K. Dai: Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles. Mater. Lett. 62, 447 (2008).
A.K.L. Sajjad, S. Shamaiila, B.Z. Tian, F. Chen, and J.L. Zhang: Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J. Hazard. Mater. 177, 781 (2010).
C.H. Choi, W.I. Cho, B.W. Cho, H.S. Kim, Y.S. Yoon, and Y.S. Tak: Radio frequency magnetron sputtering power effect on the ionic conductivities of lipon films. Electrochem. Solid St. 5, 14 (2002).
S. Zhang, D. Sun, Y. Fu, H. Du, and Q. Zhang: Effect of sputtering target power density on topography and residual stress during growth of nanocomposite nc-TiN/a-SiNx thin films. Diam. Relat. Mater. 13, 1777 (2004).
K. Kim, M. Park, W. Lee, H.W. Kim, J.G. Lee, and C. Lee: Effects of sputtering power on mechanical properties of Cr films deposited by magnetron sputtering. Mater. Sci. Tech. Ser. 24, 838 (2008).
B.S. Liu, Q.H.L. Wen, and X.J. Zhao: The effect of sputtering power on the structure and photocatalytic activity of TiO2 films prepared by magnetron sputtering. Thin Solid Films 517, 6569 (2009).
K.C. Aw, Z. Tsakadze, A. Lohani, and S. Mhaisalkar: Influence of radio frequency sputtering power towards the properties of indium zinc oxide semiconducting films. Scr. Mater. 60, 48 (2009).
S. Sreekantan, C.W. Lai, and Z. Lockman: Extremely fast growth rate of TiO2 nanotube arrays in electrochemical bath containing H2O2. J. Electrochem. Soc. 158, C1 (2011).
C. Batista, R. Ribeiro, J. Carneiro, and V. Teixeira: DC sputtered W-doped VO2 thermochromic thin films for smart windows with active solar control. J. Nanosci. Nanotechnol. 9, 4220 (2009).
C.W. Lai and S. Sreekantan: Comparison of photocatalytic and photoelecttrochemical behavior of TiO2 nanotubes prepared by different organic electrolyte. Optoelectron. Adv. Mat. 6, 82 (2012).
S. Sreekantan, R. Hazan, and Z. Lockman: Photoactivity of anatase-rutile TiO2 nanotubes formed by anodization method. Thin Solid Films 518, 16 (2009).
G. Mor, O. Varghese, M. Paulose, K. Shankar, and C. Grimes: A review on highly ordered vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energ. Mat. Sol. C 90, 2011 (2006).
V.K. Mahajan, M. Misra, K.S. Raja, and S.K. Mohapatra: Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: Effect of crystallization and defect structures, J. Phys. D: Appl. Phys. 41, 125307 (2008).
K.S. Ahn, S.H. Lee, A.C. Dillon, E. Tracy, and R. Pitts: The effect of thermal annealing on photoelectrochemical responses of WO3 thin films. J. Appl. Phys. 101, 093524 (2007).
L.D. Sun, S. Zhang, X.W. Sun, and X.D. He: Effect of geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10, 4551 (2010).
A. Sclafani and J.M. Herrmann: Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous method. J. Photochem. Photobiol. A 113, 181 (1998).
J. Jaturong, P. Sarapong, S. Yoshikazu, and Y. Susumu: Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method. J. Solid State Chem. 180, 1743 (2007).
X.L. Yang, W.L. Dai, C.W. Guo, H. Chen, Y. Cao, H.X. Li, H.Y. He, and K.N. Fan: Synthesis of novel core-shell structured WO3/TiO2 spheroids and its applications in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. J. Catal. 234, 438 (2005).
S. Komornicki, M. Radecka, and P. Sobas: Structural, electrical and optical properties of TiO2-WO3 polycrystalline ceramics. Mater. Res. Bull. 39, 2007 (2004).
S.A.K. Leghari, S. Sajjad, F. Chen, and J. Zhang: WO3/TiO2 composites with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst, Chem. Eng. J. 166, 906 (2011).
J. Gong, C.Z. Yang, W. Pu, and J. Zhang: Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate, Chem. Eng. J. 167, 190 (2011).
N. Couselo, F.S.G. Einschlag, R.J. Candal, and M. Jobbagy: Tungsten-doped TiO2 vs pure TiO2 photocatalysts: Effects on photobleaching kinetics and mechanism, J. Phys. Chem. C 112, 1094 (2008).
D.S. Kim, J.H. Yang, S. Balaji, H.J. Cho, M.K. Kim, D.U. Kang, Y. Djaoued, and Y.U. Kwon: Hydrothermal synthesis of anatase nanocrystals with lattice and surface doping tungsten species, Cryst. Eng. Comm. 11, 1621 (2009).
A.M. Marquez, J.J Plata, Y. Ortega, and J.F. Sanz: Structural defects in W-doped TiO2 (101) anatase surface: Density functional study, J. Phys. Chem. C 115, 16970 (2011).
C.A. Grimes: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17, 1451 (2007).
C.W. Lai and S. Sreekantan: Effect of applied potential on the formation of self-organized TiO2 nanotube arrays and its photoelectrochemical response. J. Nanomater. 2011, 142463 (2011).
Acknowledgments
The author would like to thank Universiti Sains Malaysia for sponsoring this work under RU Grant 814075, PRGS Grant 8044058, Fellowship USM and Research University Postgraduate Research Grant Scheme, 80430146.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lai, C.W., Sreekantan, S. & San E, P. Effect of radio frequency sputtering power on W–TiO2 nanotubes to improve photoelectrochemical performance. Journal of Materials Research 27, 1695–1704 (2012). https://doi.org/10.1557/jmr.2012.163
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.163