Skip to main content
Log in

Standing porous ZnO nanoplate-built hollow microspheres and kinetically controlled dissolution/crystal growth mechanism

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The standing porous nanoplate-built ZnO hollow microspheres with micro/nanostructure are fabricated based on a modified hydrothermal strategy, using citrate as structural director, and subsequent annealing treatment. The hollow spheres are composed of the vertically standing and cross-linked single crystalline porous nanoplates with the exposed surface of nonpolar (10\(\bar 1\)0) planes. Experiments have revealed the structural evolution: the formation of amorphous spheres in the initial reaction stage, followed by surface crystallization and nanoplate outward growth accompanied by inward dissolution of the amorphous spheres. Citrate in the precursor solution plays a dominant role in the formation of such porous ZnO hollow spheres. A model is presented, based on citrate-induced amorphous sphere formation and kinetically controlled dissolution and crystal growth. The model describes the formation of the hollow spheres, thermodynamically and kinetically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

References

  1. Y. Zhao and L. Jiang: Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 21, 3621 (2009).

    Article  CAS  Google Scholar 

  2. T.Y. Ma, X.J. Zhang, and Z.Y. Yuan: Hierarchical meso/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. J. Phys. Chem. C 113, 12854 (2009).

    Article  CAS  Google Scholar 

  3. F. Lu, W. Cai, and Y.G. Zhang: ZnO hierarchical micro/nanoarchitectures: Solvothermal synthesis and structurally enhanced photocatalytic performance. Adv. Funct. Mater. 18, 1047 (2008).

    Article  CAS  Google Scholar 

  4. H.G. Zhang, Q.S. Zhu, Y. Zhang, Y. Wang, L. Zhao, and B. Yu: One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater. 17, 2766 (2007).

    Article  CAS  Google Scholar 

  5. B. Meyer, H. Rabaab, and D. Marx: Water adsorption on ZnO(1010): From single molecules to partially dissociated monolayers. Phys. Chem. Chem. Phys. 8, 1513 (2006).

    Article  CAS  Google Scholar 

  6. Y. Kikuchi, Q.R. Qian, M. Machida, and H. Tatsumoto: Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution. Carbon 44, 195 (2006).

    Article  CAS  Google Scholar 

  7. X.B. Wang, W.P. Cai, Y.X. Lin, G.Z. Wang, and C.H. Liang: Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem. 20, 8582 (2010).

    Article  CAS  Google Scholar 

  8. W.W. Lu, S.Y. Gao, and J.J. Wang: One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance. J. Phys. Chem. C 112, 16792 (2008).

    Article  CAS  Google Scholar 

  9. Y.C. Lu, L.L. Wang, D.J. Wang, T.F. Xie, L.P. Chen, and Y.H. Lin: A comparative study on plate-like and flower-like ZnO nanocrystals surface photovoltage property and photocatalytic activity. Mater. Chem. Phys. 129, 281 (2011).

    Article  CAS  Google Scholar 

  10. M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, and G.S. Guo: High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sens. Actuators, B 157, 565 (2011).

    Article  CAS  Google Scholar 

  11. E. Kowsari: Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst. J. Nanopart. Res. 13, 3363 (2011).

    Article  CAS  Google Scholar 

  12. Y.Y. Zhang, W.Y. Fu, Y.M. Sui, H.B. Yang, J. Cao, M.H. Li, Y.X. Li, X.M. Zhou, Y. Leng, W.Y. Zhao, H. Chen, L. Zhang, Q. Jing, and H. Zhao: Twinned tabour-like ZnO: Surfactant-, template-free synthesis and gas sensing behaviors. Appl. Surf. Sci. 257, 5784 (2011).

    Article  CAS  Google Scholar 

  13. F. Caruso, R.A. Caruso, and H. Mohwald: Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111 (1998).

    Article  CAS  Google Scholar 

  14. Y.G. Sun, B.T. Mayers, and Y.N. Xia: Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2, 481 (2002).

    Article  CAS  Google Scholar 

  15. P.R. Selvakannan and M. Sastry: Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem. Commun. 41, 1684 (2005).

    Article  Google Scholar 

  16. Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, and A.P. Alivisatos: Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711 (2004).

    Article  CAS  Google Scholar 

  17. H.L. Xu and W.Z. Wang: Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 46, 1489 (2007).

    Article  CAS  Google Scholar 

  18. W. Ostwald: On the assumed isomerism of red and yellow mercury oxide and the surface-tension of solid bodies. Z. Phys. Chem. 34, 495 (1900).

    Google Scholar 

  19. Y.X. Du and Q.X. Yuan: Catalyst-free synthesis of honeycomb-like and straight ZnO nanowires. J. Alloy. Comp. 494, 468 (2010).

    Article  CAS  Google Scholar 

  20. C. Li, Z.S. Yu, S.M. Fang, H.X. Wang, Y.H. Gui, J.Q. Xu, and R.F. Chen: Fabrication and gas sensing property of honeycomb-like ZnO. Chin. Chem. Lett. 19, 599 (2008).

    Article  CAS  Google Scholar 

  21. Z.H. Jing and J.H. Zhan: Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20, 4547 (2008).

    Article  CAS  Google Scholar 

  22. X.Y. Zeng, J.L. Yuan, and L.D. Zhang: Synthesis and photoluminescent properties of rare earth doped ZnO hierarchical microspheres. J. Phys. Chem. C 112, 3503 (2008).

    Article  CAS  Google Scholar 

  23. J. Zhang, S.R. Wang, M.J. Xu, Y. Wang, B.L. Zhu, S.M. Zhang, W.P. Huang, and S.H. Wu: Hierarchically porous ZnO architectures for gas sensor application. Cryst. Growth Des. 9, 3532 (2009).

    Article  CAS  Google Scholar 

  24. S. Brunauer, L.S. Deming, W.E. Deming, and E. Teller: On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723 (1940).

    Article  CAS  Google Scholar 

  25. S. Brunauer, P.H. Emmett, and E. Teller: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  26. J.D. Verhoeven: Fundamentals of Physical Metallurgy, Ch. 8 (John Wiley & Sons, NY, 1975).

    Google Scholar 

  27. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenziei, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, and H.F. Xu: Complex and oriented ZnO nanostructures. Nat. Mater. 2, 821 (2003).

    Article  CAS  Google Scholar 

  28. C.L. Kuo, T.J. Kuo, and M.H. Huang: Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J. Phys. Chem. B 109, 20115 (2005).

    Article  CAS  Google Scholar 

  29. J.D. Verhoeven: Fundamentals of Physical Metallurgy, Ch. 11, 12 (John Wiley & Sons, NY, 1975).

    Google Scholar 

  30. Q. Hao, L.Q. Xu, G.D. Li, and Y.T. Qian: Hydrothermal synthesis of microscaled Cu@C polyhedral composites and their sensitivity to convergent electron beam. Langmuir 25, 6363 (2009).

    Article  CAS  Google Scholar 

  31. W. Zhao, X.Y. Song, G.Z. Chen, and S.X. Sun: One-step template-free synthesis of ZnWO4 hollow clusters. J. Mater. Sci. 44, 3082 (2009).

    Article  CAS  Google Scholar 

  32. X. Li, C.J. Tang, M. Ai, L. Dong, and Z. Xu: Controllable synthesis of pure-phase rare-earth orthoferrites hollow spheres with a porous shell and their catalytic performance for the CO+NO reaction. Chem. Mater. 22, 4879 (2010).

    Article  CAS  Google Scholar 

  33. Y.M. Sui, W.Y. Fu, H.B. Yang, Y. Zeng, Y.Y. Zhang, Q. Zhao, Y.G. Li, X.M. Zhou, Y. Leng, M.H. Li, and G.T. Zou: Low-temperature synthesis of Cu2O crystals: Shape evolution and growth mechanism. Cryst. Growth Des. 10, 99 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the China Postdoctoral Science Foundation (Grant No. 2011M501407) and Natural Science Foundation of China (Grant No. 21001002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Cai, W., Wang, G. et al. Standing porous ZnO nanoplate-built hollow microspheres and kinetically controlled dissolution/crystal growth mechanism. Journal of Materials Research 27, 951–958 (2012). https://doi.org/10.1557/jmr.2012.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.15

Navigation