Skip to main content
Log in

Low temperature proton conduction in bulk nanometric TiO2 prepared by high-pressure field assisted sintering

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We investigated the conductivity of high-density bulk-anatase samples with a grain size between 24 and 56 nm prepared by high pressure field-assisted sintering. When exposed to humid atmosphere, the insurgence of proton conductivity was observed for temperatures below 350 °C. Below this temperature, the samples showed a conductivity several orders of magnitude higher than that measured under dry oxygen atmosphere. The protonic conductivity strongly increased as grain size decreased, while a negligible dependence from porosity was observed when the latter ranged between 8 and 25 vol%. If compared with zirconia- and ceria-based nanomaterials with similar grain size, bulk nanometric anatase showed the highest low temperature protonic conductivity as well as the highest crossover temperature between dry and humid conduction behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. J. Maier: Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805 (2005).

    Article  CAS  Google Scholar 

  2. J. Maier: Nano-ionics: Trivial and non-trivial size effects on ion conduction in solids. Z. Phys. Chem. 217, 415 (2003).

    Article  CAS  Google Scholar 

  3. H.L. Tuller: Ionic conduction in nanocrystalline materials. Solid State Ionics 131, 143 (2000).

    Article  CAS  Google Scholar 

  4. J. Schoonman: Nanostructured materials in solid state ionics. Solid State Ionics 135-136, 5 (2005).

    Google Scholar 

  5. S. Kim, U. Anselmi-Tamburini, H.J. Park, M. Martin, and Z.A. Munir: Unprecedented room-temperature electrical power generation using nanoscale fluorite-structured oxide electrolytes. Adv. Mater. 20, 556 (2008).

    Article  CAS  Google Scholar 

  6. G. Chiodelli, F. Maglia, U. Anselmi-Tamburini, and Z.A. Munir: Characterization of low temperature protonic conductivity in bulk nanocrystalline fully stabilized zirconia. Solid State Ionics 180, 297 (2009).

    Article  CAS  Google Scholar 

  7. U. Anselmi-Tamburini, F. Maglia, G. Chiodelli, P. Riello, S. Bucella, and Z.A. Munir: Enhanced protonic conductivity in fully dense nanometric cubic zirconia. Appl. Phys. Lett. 89, 163116 (2006).

    Article  Google Scholar 

  8. S. Kim, H.J. Avila-Paredes, S.Z. Wang, C.T. Chen, R.A. De Souza, M. Martin, and Z.A. Munir: On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia. Phys. Chem. Chem. Phys. 11, 3035 (2009).

    Article  CAS  Google Scholar 

  9. E. Ruiz-Trejo and J.A. Kilner: Possible proton conduction in Ce0.9Gd0.1O2-δ nanoceramics. J. Appl. Electrochem. 39, 523 (2009).

    Article  CAS  Google Scholar 

  10. H. Takamura and N. Takahashi: Electrical conductivity of dense nanocrystalline ceria under humidified atmosphere. Solid State Ionics 181, 100 (2010).

    Article  CAS  Google Scholar 

  11. H.J. Avila-Paredes, C. Chen, S. Wang, R.A. De Souza, M. Martin, Z.A. Munir, and S. Kim: Grain boundaries in dense nanocrystalline ceria ceramics: Exclusive pathways for proton conduction at room temperature. J. Mater. Chem. 20, 10110 (2010).

    Article  CAS  Google Scholar 

  12. M. Shirpour, G. Gregori, R. Merkle, and J. Maier: On the proton conductivity in pure and gadolinium doped nanocrystalline cerium oxide. Phys. Chem. Chem. Phys. 13, 937 (2011).

    Article  CAS  Google Scholar 

  13. J.S. Park, Y.B. Kim, J.H. Shim, S. Kang, T.M. Gur, and F.B. Prinz: Evidence of proton transport in atomic layer deposited yttria-stabilized zirconia films. Chem. Mater. 22, 5366 (2010).

    Article  CAS  Google Scholar 

  14. M.T. Colomer: Nanoporous anatase thin films as fast proton-conducting materials. Adv. Mater. 18, 371 (2006).

    Article  CAS  Google Scholar 

  15. G. Garcia-Belmonte, V. Kytin, T. Dittrich, and J. Bisquert: Effect of humidity on the ac conductivity of nanoporous TiO2. J. Appl. Phys. 94, 5261 (2003).

    Article  CAS  Google Scholar 

  16. H. Ekström, B. Wickman, M. Gustavsson, P. Hanarp, L. Eurenius, E. Olsson, and G. Lindbergh: Nanometer-thick films of titanium oxide acting as electrolyte in the polymer electrolyte fuel cell. Electrochim. Acta 52, 4239 (2007).

    Article  Google Scholar 

  17. W.K. Chan, W.J.H. Borghols, and F.M. Mulder: Direct observation of space charge induced hydrogen ion insertion in nanoscale anatase TiO2. Chem. Commun. 47, 6342 (2008).

    Article  Google Scholar 

  18. Y.I. Lee, J-H. Lee, S-H. Hong, and D-Y. Kim: Preparation of nanostructured TiO2 ceramics by spark plasma sintering. Mater. Res. Bull. 38, 925 (2003).

    Article  CAS  Google Scholar 

  19. P. Angerer, L.G. Yu, K.A. Khor, and G. Krumpel: Spark-plasma-sintering (SPS) of nanostructured and submicron titanium oxide powders. Mater. Sci. Eng., A 381, 16 (2004).

    Article  Google Scholar 

  20. N. Masahashi: Fabrication of bulk anatase TiO2 by the spark plasma sintering method. Mater. Sci. Eng., A 452/453, 721 (2007).

    Article  Google Scholar 

  21. J.H. Noh, H.S. Jung, J-K. Lee, J-R. Kim, and K.S. Hong: Microwave dielectric properties of nanocrystalline TiO2 prepared using spark plasma sintering. J. Eur. Ceram. Soc. 27, 2937 (2007).

    Article  CAS  Google Scholar 

  22. A. Weibel, R. Bouchet, R. Denoyel, and P. Knauth: Hot pressing of nanocrystalline TiO2 (anatase) ceramics with controlled microstructure. J. Eur. Ceram. Soc. 27, 2641 (2007).

    Article  CAS  Google Scholar 

  23. M. Mazaheri, Z.R. Hesabi, and S.K. Sadrnezhaad: Two-step sintering of titania nanoceramics assisted by anatase-to-rutile phase transformation. Scr. Mater. 59, 139 (2008).

    Article  CAS  Google Scholar 

  24. F. Maglia, M. Dapiaggi, I. Tredici, and U. Anselmi-Tamburini: Synthesis of fully dense TiO2 through high pressure field assisted rapid sintering. Nanosci. Nanotechnol. Lett. 4, 205 (2012).

    Article  CAS  Google Scholar 

  25. U. Anselmi-Tamburini, J.E. Garay, and Z.A. Munir: Fast low-temperature consolidation of bulk nanometric ceramic materials. Scr. Mater. 54, 823 (2006).

    Article  CAS  Google Scholar 

  26. P. Knauth and H.L. Tuller: Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J. Appl. Phys. 85, 897 (1999).

    Article  CAS  Google Scholar 

  27. S. Lunell, A. Stashans, L. Ojamae, H. Lindström, and A. Hagfeldt: Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J. Am. Chem. Soc. 119, 7374 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work has been funded by Fondazione Cariplo (Grant No. 2010-0435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Maglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglia, F., Tredici, I.G., Spinolo, G. et al. Low temperature proton conduction in bulk nanometric TiO2 prepared by high-pressure field assisted sintering. Journal of Materials Research 27, 1975–1981 (2012). https://doi.org/10.1557/jmr.2012.158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.158

Navigation