Skip to main content
Log in

Effects of morphological characteristics of Pt nanoparticles supported on poly(acrylic acid)-wrapped multiwalled carbon nanotubes on electrochemical performance of direct methanol fuel cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The catalytic activity of Pt nanoparticles (NPs) significantly influences the electrochemical performance of direct methanol fuel cells. Information about the factors that influence the electrochemical activity of the catalyst themselves is scarce; hence, guidelines for the preparation of Pt NPs that yields the best performances are lacking. With consideration for this situation, we systematically investigated the relationship(s) between the characteristics of Pt NPs and their electrochemical performance. The general characteristics of Pt NPs, such as the average size, loading density, and dispersion status on the support, were varied in the presence of poly(acrylic acid)-wrapped multiwalled carbon nanotubes by controlling the preparation conditions, including the pH of the aqueous solution, the reaction temperature, and the reaction time. The enhanced catalytic activity is attributable to higher degree of dispersion, specific surface area, and electrochemically active surface area of Pt NPs. The optimized catalyst exhibits a ∼165% higher catalytic activity toward methanol oxidation than the commercial E-TEK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8.
FIG. 9.
FIG. 10
TABLE I
FIG. 11

Similar content being viewed by others

References

  1. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, and W. Van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).

    Article  CAS  Google Scholar 

  2. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, and D.P. Wilkinson: A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155, 95 (2006).

    Article  CAS  Google Scholar 

  3. X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld: Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J. Power Sources 86, 111 (2000).

    Article  CAS  Google Scholar 

  4. J. Kua and W.A. Goddard: Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 121, 10928 (1999).

    Article  CAS  Google Scholar 

  5. A.E. Aksoylu, M. Madalena, A. Freitas, M.F.R. Pereira, and J.L. Figueiredo: The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon 39, 175 (2001).

    Article  CAS  Google Scholar 

  6. M.A. Fraga, E. Jordão, M.J. Mendes, M.M.A. Freitas, J.L. Faria, and J.L. Figueiredo: Properties of carbon-supported platinum catalysts: Role of carbon surface sites. J. Catal. 209, 355 (2002).

    Article  CAS  Google Scholar 

  7. G-G. Park, T-H. Yang, Y-G. Yoon, W-Y. Lee, and C-S. Kim: Pore size effect of the DMFC catalyst supported on porous materials. Int. J. Hydrogen Energy 28, 645 (2003).

    Article  CAS  Google Scholar 

  8. F. Rodríguez-Reinoso, I. Rodríguez-Ramos, C. Moreno-Castilla, A. Guerrero-Ruiz, and J.D. López-González: Platinum catalysts supported on activated carbons: I. Preparation and characterization. J. Catal. 99, 171 (1986).

    Article  Google Scholar 

  9. Z. Zhou, W. Zhou, S. Wang, G. Wang, L. Jiang, H. Li, G. Sun, and Q. Xin: Preparation of highly active 40wt.% Pt/C cathode electrocatalysts for DMFC via different routes. Catal. Today 93, 523 (2004).

    Article  Google Scholar 

  10. J. Wang, G. Yin, Y. Shao, S. Zhang, Z. Wang, and Y. Gao: Effect of carbon black support corrosion on the durability of Pt/C catalyst. J. Power Sources 171, 331 (2007).

    Article  CAS  Google Scholar 

  11. E.S. Steigerwalt, G.A. Deluga, D.E. Cliffel, and C.M. Lukehart: A Pt−Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. J. Phys. Chem. B 105, 8097 (2001).

    Article  CAS  Google Scholar 

  12. Y.L. Hsin, K.C. Hwang, and C-T. Yeh: Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J. Am. Chem. Soc. 129, 9999 (2007).

    Article  CAS  Google Scholar 

  13. A. Ermete: Carbon supports for low-temperature fuel cell catalysts. Appl. Catal., B 88, 1 (2009).

    Article  Google Scholar 

  14. J.Y. Oh, S.H. Jee, N. Kakati, S.H. Kim, M.J. Song, and Y.S. Yoon: Hydrothermal synthesis of Pt-Ru-W anode catalyst supported on multi-walled carbon nanotubes for methanol oxidation fuel cell. Jpn. J. Appl. Phys. 49, 115101 (2010).

    Article  Google Scholar 

  15. Z.Q. Tian, S.P. Jiang, Y.M. Liang, and P.K. Shen: Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J. Phys. Chem. B 110, 5343 (2006).

    Article  CAS  Google Scholar 

  16. A. Hirsch: Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853 (2002).

    Article  CAS  Google Scholar 

  17. J. Prabhuram, T.S. Zhao, Z.K. Tang, R. Chen, and Z.X. Liang: Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J. Phys. Chem. B 110, 5245 (2006).

    Article  CAS  Google Scholar 

  18. T. Matsumoto, T. Komatsu, H. Nakano, K. Arai, Y. Nagashima, E. Yoo, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, and J. Nakamura: Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells. Catal. Today 90, 277 (2004).

    Article  CAS  Google Scholar 

  19. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin: Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J. Phys. Chem. B 107, 6292 (2003).

    Article  CAS  Google Scholar 

  20. Y-T. Kim and T. Mitani: Surface thiolation of carbon nanotubes as supports: A promising route for the high dispersion of Pt nanoparticles for electrocatalysts. J. Catal. 238, 394 (2006).

    Article  CAS  Google Scholar 

  21. H.G. Cho, S.W. Kim, H.J. Lim, C.H. Yun, H.S. Lee, and C.R. Park: A simple and highly effective process for the purification of single-walled carbon nanotubes synthesized with arc-discharge. Carbon 47, 3544 (2009).

    Article  CAS  Google Scholar 

  22. S.J. Yang, J.Y. Choi, H.K. Chae, J.H. Cho, K.S. Nahm, and C.R. Park: Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite. Chem. Mater. 21, 1893 (2009).

    Article  CAS  Google Scholar 

  23. S.J. Yang, J.H. Cho, K.S. Nahm, and C.R. Park: Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites. Int. J. Hydrogen Energy 35, 13062 (2010).

    Article  CAS  Google Scholar 

  24. V. Georgakilas, K. Kordatos, M. Prato, D.M. Guldi, M. Holzinger, and A. Hirsch: Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760 (2002).

    Article  CAS  Google Scholar 

  25. Y. Wang, X. Xu, Z.Q. Tian, Y. Zong, H.M. Cheng, and C.J. Lin: Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution. Chem. Eur. J. 12, 2542 (2006).

    Article  CAS  Google Scholar 

  26. W. Yang, X.L. Wang, F. Yang, C. Yang, and X.R. Yang: Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction. Adv. Mater. 20, 2579 (2008).

    Article  CAS  Google Scholar 

  27. S. Wang, S.P. Jiang, and X. Wang: Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation. Nanotechnology 19, 265601 (2008).

    Article  Google Scholar 

  28. D-Q. Yang, B. Hennequin, and E. Sacher: XPS demonstration of π−π interaction between benzyl mercaptan and multiwalled carbon nanotubes and their use in the adhesion of Pt nanoparticles. Chem. Mater. 18, 5033 (2006).

    Article  CAS  Google Scholar 

  29. C-L. Lee, H-P. Chiou, K-C. Chang, and C-H. Huang: Carbon nanotubes-supported colloidal AgePd nanoparticles as electrocatalysts toward oxygen reduction reaction in alkaline electrolyte. Int. J. Hydrogen Energy 36, 2759 (2011).

    Article  CAS  Google Scholar 

  30. Y. Zhao, X. Yang, J. Tian, F. Wang, and L. Zhan: Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. Int. J. Hydrogen Energy 35, 3249 (2010).

    Article  CAS  Google Scholar 

  31. V.D. Noto and E. Negro: Development of nano-electrocatalysts based on carbon nitride supports for the ORR processes in PEM fuel cells. Electrochim. Acta 55, 7564 (2010).

    Article  Google Scholar 

  32. V.D. Noto and E. Negro: Pt–Fe and Pt–Ni carbonnitride-based ‘core–shell’ ORR electrocatalysts for polymer electrolyte membrane fuel cells. Fuel Cells Bull. 10, 234 (2010).

    Article  Google Scholar 

  33. K.C. Neyerlin, R. Srivastava, C. Yu, and P. Strasser: Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). J. Power Sources 186, 261 (2009).

    Article  CAS  Google Scholar 

  34. X. Zhang and K-Y. Chan: Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem. Mater. 15, 451 (2003).

    Article  CAS  Google Scholar 

  35. A. Katchalsky and P. Spitnik: Potentiometric titrations of polymethacrylic acid. J. Polym. Sci. 2, 432 (1947).

    Article  CAS  Google Scholar 

  36. B.L. Cushing, V.L. Kolesnichenko, and C.J. O’Connor: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893 (2004).

    Article  CAS  Google Scholar 

  37. R. Narayanan and M.A. El-Sayed: Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 109, 12663 (2005).

    Article  CAS  Google Scholar 

  38. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169 (2001).

    Article  CAS  Google Scholar 

  39. H. Tang, J. Chen, L. Nie, D. Liu, W. Deng, Y. Kuang, and S. Yao: High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs). J. Colloid Interface Sci. 269, 26 (2004).

    Article  CAS  Google Scholar 

  40. J. Cao, C. Du, S.C. Wang, P. Mercier, X. Zhang, H. Yang, and D.L. Akins: The production of a high loading of almost monodispersed Pt nanoparticles on single-walled carbon nanotubes for methanol oxidation. Electrochem. Commun. 9, 735 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2011-0029865) and the World Premier Materials Program (Contract No. 10037878) funded by the Ministry of Knowledge Economy (MKE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Rae Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, J.Y., Choi, H.S., Kim, M.S. et al. Effects of morphological characteristics of Pt nanoparticles supported on poly(acrylic acid)-wrapped multiwalled carbon nanotubes on electrochemical performance of direct methanol fuel cells. Journal of Materials Research 27, 2035–2045 (2012). https://doi.org/10.1557/jmr.2012.156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.156

Navigation