Skip to main content
Log in

Effect of strain hardening on the elastic properties and normalized velocity of hybrid UHMWPE–nylon 6–SWCNT nanocomposites fiber

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hybrid ultrahigh molecular weight polyethylene–nylon 6–single-wall carbon nanotube fibers were processed using solution spinning method. Elastic properties and normalized velocity (

$\sqrt[3]{\Omega}$

) of the hybrid fibers were measured before and after strain hardening through repeated loading–unloading cycles. Phenomenal improvement in the properties was found: strength, modulus, and normalizing velocity increased by almost one order of magnitude after strain hardening. Neat and reinforced filaments were characterized through differential scanning calorimetry, Raman spectroscopy, and scanning electron microscope before and after strain hardening. It has been revealed that nylon 6 contributed to the deformation ability of the composite fiber, while carbon nanotubes contributed to the sharing of load as they aligned during extrusion and strain hardening processes. Important morphological features determining the fiber properties were the change in crystallinity and rate of crystallization, formation of microdroplets, interfacial sliding, polymer coating of nanotubes, alignment of polymer fibrils and nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I
FIG. 2
TABLE II
FIG. 3
FIG. 4
FIG. 5
FIG. 6
TABLE III
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.J.N. Jacobs and J.L.J. Dingenen: Ballistic protection mechanisms in personal armour. J. Mater. Sci. 36, 3137–3142 (2001).

    Article  CAS  Google Scholar 

  2. M. Grujicic, P.S. Glomski, T. He, G. Arakere, W.C. Bell, and B.A. Cheeseman: Material modeling and ballistic-resistance analysis of armor-grade composites reinforced with high-performance fibers. J. Mater. Eng. Perform. 18, 1169–1182 (2009).

    Article  CAS  Google Scholar 

  3. S.L. Phoenix and P.K. Porwal: A new membrane model for the ballistic impact response and V50 performance of multi-ply fibrous systems. Inter. J. Solids Struct. 40, 6723–6765 (2003).

    Article  Google Scholar 

  4. R.A. Lane: High performance fibers for personnel and vehicle armor systems. AMPTIAC Quarterly 9(2), 3–9 (2005).

    Google Scholar 

  5. H. Mahfuz, A. Adnan, V.K. Rangari, and S. Jeelani: Manufacturing and characterization of carbon nanotube/polyethylene composites. Int. J. Nanosci. 4(1), 55–72 (2005).

    Article  CAS  Google Scholar 

  6. H. Mahfuz, A. Adnan, and V.K. Rangari: Enhancement of strength and stiffness of nylon 6 filaments through carbon nanotubes reinforcement. Appl. Phys. Lett. 88, 083119 (2006).

    Article  Google Scholar 

  7. S.L. Ruan, P. Gao, and T.X. Yu: Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer 47, 1604 (2006).

    Article  CAS  Google Scholar 

  8. M.A. Samad and S.K. Sinha: Mechanical, thermal and tribological characterization of a UHMWPE film reinforced with carbon nanotubes coated on steel. Tribol. Int. 44, 1932–1941 (2011).

    Article  Google Scholar 

  9. A. Mierczynska, M. Mayne-L’Hermite, G. Bioteux, and J. Jeszka: Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J. Appl. Polym. Sci. 105, 158–168 (2007).

    Article  CAS  Google Scholar 

  10. M.R. Khan, H. Mahfuz, T. Leventouri., V.K. Rangari, and A. Kyriacou: Enhancing toughness of low-density polyethylene filaments through infusion of multiwalled carbon nanotubes and ultrahigh molecular weight polyethylene. Polym. Eng. Sci. 51(4), 654–662 (2011).

    Article  CAS  Google Scholar 

  11. S.M. Kurtz, O.K. Muratogiu, M. Evans, and A.A. Edidin: Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomater 20, 1659 (1999).

    Article  CAS  Google Scholar 

  12. V. Miri, O. Persyn, J.M. Lefebvre, and R. Seguela: Effect of water absorption on the plastic deformation behavior of Nylon 6. Eur. Polym. J. 45, 757–762 (2009).

    Article  CAS  Google Scholar 

  13. L.Y. Sun, G.L. Warren, D. Davis, and H.J. Sue: Nylon toughened epoxy/SWCNT composites. J. Mater. Sci. 46, 207–214(2011).

    Article  CAS  Google Scholar 

  14. J. Gao, B. Zhao, M. Itkis, E. Bekyarova, H. Hu, V. Kranak, A. Yu, and R. Haddon: Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. J. Am. Chem. Soc. 128, 7492–7496 (2006).

    Article  CAS  Google Scholar 

  15. B. McCarthy, J.N. Coleman, S.A. Curran, A.B. Dalton, A.P. Davey, Z. Konya, A. Fonseca, J.B. Nagy, W.J. Blau: Observation of site selective binding in a polymer nanotube composite. J. Mater. Sci. Lett. 19(24), 2239–2241 (2000).

    Article  CAS  Google Scholar 

  16. M. Naffakh, C. Marco, and M.A. Gomez: Crystalline transformations in nylon-6/single-walled carbon nanotube nanocomposites. J. Nanosci. Nanotechnol. 9, 6120–6126 (2009).

    Article  CAS  Google Scholar 

  17. H.R. Brown: Studies of orientation and structure of crazed matter in polystyrene. I. Optical measurements. J. Polym. Sci. Polym. Phys. Ed. 17, 1417 (1979).

    Article  CAS  Google Scholar 

  18. A.J. Kinloch and R.J. Young: Fracture Behaviour of Polymers (Elsevier Applied Science, London, 1988).

    Google Scholar 

  19. C. Zhao, G. Hu, R. Justice, D.W. Schaefer, S. Zhang, M. Yang, and C.C. Han: Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer 46, 5125 (2005).

    Article  CAS  Google Scholar 

  20. N. Patil, L. Balzano, G. Portale, and S. Rastogi: Influence of shear in the crystallization of polyethylene in the presence of SWCNTs. Carbon 48, 4116–4128 (2010).

    Article  CAS  Google Scholar 

  21. N.E. Dowling: Mechanical Behavior of Materials (Pearson Prentice Hall, Upper Saddle River, NJ, 2007).

    Google Scholar 

  22. H. Mahfuz, M.R. Khan, T. Leventouri., and E. Liarokapis: Investigation of MWCNT reinforcement on the strain hardening behavior of ultrahigh molecular weight polyethylene. J. Nanotechnol. Article ID 637395, doi:10.1155/2011/637395, 1–9 (2011).

    Google Scholar 

  23. B.D. Favis: The effect of processing parameters on the morphology of an immiscible binary blend. J. Appl. Polym. Sci. 39, 285 (1990).

    Article  CAS  Google Scholar 

  24. W.F. Wong and R.J. Young: Analysis of the deformation of gel-spun polyethylene fibers using Raman spectroscopy. J. Mater. Sci. 29, 510–519 (1994)

    Article  CAS  Google Scholar 

  25. K. Prasad and D.T. Grubb: Direct observation of taut tie molecules in high-strength polyethylene fibers by Raman spectroscopy. J. Polym. Sci. Polym. Phys. Ed. 27, 381 (1989).

    Article  CAS  Google Scholar 

  26. B.J. Kip, Van M.C.P. Eijk, and R.J. Meier: Molecular deformation of high-modulus polyethylene fibers studied by micro-Raman spectroscopy. J. Polym. Sci. Polym. Phys. Ed. 29, 99 (1991).

    Article  CAS  Google Scholar 

  27. A. Cooper, R.J. Young, and M. Halsall: Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A. 32, 401–411 (2001).

    Article  Google Scholar 

  28. Y. Huang and R.J. Young: Microstructure and mechanical properties of pitch-based carbon fibers. J. Mater. Sci. 29, 4027 (1994).

    Article  CAS  Google Scholar 

  29. G. Socrates: Infrared and Raman Characteristic Group Frequencies Tables and Charts, 3rd ed. (John Wiley & Sons, West Sussex, UK, 2001).

    Google Scholar 

  30. B.H. Stuart: Polymer crystallinity studied using Raman spectroscopy. Vib. Spectrosc. 10, 79–87 (1996).

    Article  CAS  Google Scholar 

  31. R.J. Nemanich and S.A. Solin: Observation of an anomalously sharp feature in the 2nd order Raman spectrum of graphite. Solid State Commun. 23(7), 417 (1977).

    Article  CAS  Google Scholar 

  32. R.J. Nemanich and S.A. Solin: First- and second-order Raman scattering from finite-size crystals of graphite. Phy. Rev. B 20, 392 (1979).

    Article  CAS  Google Scholar 

  33. M.S. Dresselhous, M.A. Pimenta, and P.C. Eklund: In Raman Scattering in Material Science. (Springer, Berlin, 2000).

    Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge support from National Science Foundation (NSF) for this work through Grant No. HRD-976871. Authors would also like to thank Dr. Efthymios Liarokapis and Dr. Mahmoud Madani for their assistance in Raman spectroscopy and SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mujibur R. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.R., Mahfuz, H. & Leventouri, T. Effect of strain hardening on the elastic properties and normalized velocity of hybrid UHMWPE–nylon 6–SWCNT nanocomposites fiber. Journal of Materials Research 27, 2657–2667 (2012). https://doi.org/10.1557/jmr.2012.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.155

Navigation