Skip to main content
Log in

A novel two-step preparation of spinel LiMn2O4 nanowires and its electrochemical performance charaterization

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

LiMn2O4 nanowires have been synthesized by a two-step approach. γ-MnOOH nanowires are firstly synthesized by hydrothermal method and after further sintering with LiOH at 750 °C for about 3 h, the wire-like LiMn2O4 can be obtained. The structure of the final product is characterized by x-ray diffraction using Rietveld refinement. Its electrochemical performance is investigated by galvanostatic tests. The as-prepared LiMn2O4 nanowires display excellent cyclability. The LiMn2O4 nanowires with good cycle stability may be beneficial from the structural stability of LiMn2O4 crystal cell and one-dimensional nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.
TABLE II.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. K. Ozawa: Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes - the LiCoO2/C system. Solid State Ionics 69, 212 (1994).

    Article  CAS  Google Scholar 

  2. J.M. Tarascon and M. Armand: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).

    Article  CAS  Google Scholar 

  3. M.S. Whittingham: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).

    Article  CAS  Google Scholar 

  4. J.B. Goodenough and Y. Kim: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).

    Article  CAS  Google Scholar 

  5. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, and W. Van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).

    Article  CAS  Google Scholar 

  6. M. Armand and J.M. Tarascon: Building better batteries. Nature 451, 652 (2008).

    Article  CAS  Google Scholar 

  7. J.Q. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J.W. Wang, and B. Liang: A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177, 512 (2008).

    Article  CAS  Google Scholar 

  8. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach: Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 4, 3243 (2011).

    Article  CAS  Google Scholar 

  9. E. Antolini: LiCoO2: Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170, 159 (2004).

    Article  CAS  Google Scholar 

  10. J.R. Ying, C.Y. Jiang, and C.R. Wan: Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. J. Power Sources 129, 264 (2004).

    Article  CAS  Google Scholar 

  11. G. Amatucci and J.M. Tarascon: Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries. J. Electrochem. Soc. 149, K31 (2002).

    Article  CAS  Google Scholar 

  12. S.J. Bao, W.H. Zhou, Y.Y. Liang, B.L. He, and H.L. Li: Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution. Mater. Chem. Phys. 95, 188 (2006).

    Article  CAS  Google Scholar 

  13. T.F. Yi, Y.R. Zhu, X.D. Zhu, J. Shu, C.B. Yue, and A.N. Zhou: A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15, 779 (2009).

    Article  CAS  Google Scholar 

  14. H.J. Yue, X.K. Huang, D.P. Lv, and Y. Yang: Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability. Electrochim. Acta 54, 5363 (2009).

    Article  CAS  Google Scholar 

  15. J.Y. Luo and Y.Y. Xia: Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 17, 3877 (2007).

    Article  CAS  Google Scholar 

  16. Q.T. Qu, L.J. Fu, X.Y. Zhan, D. Samuelis, J. Maier, L. Li, S. Tian, Z.H. Li, and Y.P. Wu: Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ. Sci. 4, 3985 (2011).

    Article  CAS  Google Scholar 

  17. H. Manjunatha, G.S. Suresh, and T.V. Venkatesha: Electrode materials for aqueous rechargeable lithium batteries. J. Solid State Electrochem. 15, 431 (2011).

    Article  CAS  Google Scholar 

  18. A. Manthiram, A.V. Murugan, A. Sarkar, and T. Muraliganth: Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1, 621 (2008).

    Article  CAS  Google Scholar 

  19. L.W. Su, Y. Jing, and Z. Zhou: Li ion battery materials with core-shell nanostructures. Nanoscale 3, 3967 (2011).

    Article  CAS  Google Scholar 

  20. P. Zhao, D.S. Wang, J. Lu, C.Y. Nan, X.L. Xiao, and Y.D. Li: Synthesis of LiV3O8 nanorods and shape-dependent electrochemical performance. J. Mater. Res. 26, 424 (2011).

    Article  CAS  Google Scholar 

  21. C.Z. Lu and G.T.K. Fey: Nanocrystalline and long cycling LiMn2O4 cathode material derived by a solution combustion method for lithium ion batteries. J. Phys. Chem. Solids 67, 756 (2006).

    Article  CAS  Google Scholar 

  22. B.J. Hwang, R. Santhanam, and D.G. Liu: Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. J. Power Sources 97–, 443 (2001).

    Article  Google Scholar 

  23. B.J. Hwang, R. Santhanam, and D.G. Liu: Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by a sol-gel method at low temperature. J. Power Sources 101, 86 (2001).

    Article  CAS  Google Scholar 

  24. X.N. Wang, X.Y. Chen, L.H. Gao, H.G. Zheng, M.R. Ji, T. Shen, and Z.D. Zhang: Citric acid-assisted sol-gel synthesis of nanocrystalline LiMn2O4 spinel as cathode material. J. Cryst. Growth 256, 123 (2003).

    Article  CAS  Google Scholar 

  25. R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C.W. Dunnill, and D.H. Gregory: Electrochemical behaviour of nano-sized spinel LiMn2O4 and LiAlxMn2-xO4 (x = Al: 0.00-0.40) synthesized via fumaric acid-assisted sol-gel synthesis for use in lithium rechargeable batteries. J. Phys. Chem. Solids 69, 2082 (2008).

    Article  CAS  Google Scholar 

  26. S.B. Tang, M.O. Lai, and L. Lu: Properties of nano-crystalline LiMn2O4 thin films deposited by pulsed laser deposition. Electrochim. Acta 52, 1161 (2006).

    Article  CAS  Google Scholar 

  27. X.X. Li, F.Y. Cheng, B. Guo, and J. Chen: Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 109, 14017 (2005).

    Article  CAS  Google Scholar 

  28. J. Cabana, T. Valdes-Solis, M.R. Palacin, J. Oro-Sole, A. Fuertes, G. Marban, and A.B. Fuertes: Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route. J. Power Sources 166, 492 (2007).

    Article  CAS  Google Scholar 

  29. L.Q. Mai, X. Xu, L. Xu, C.H. Han, and Y.Z. Luo: Vanadium oxide nanowires for Li-ion batteries. J. Mater. Res. 26, 2175 (2011).

    Article  CAS  Google Scholar 

  30. D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, and Y. Cui: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948 (2008).

    Article  CAS  Google Scholar 

  31. Y. Yang, C. Xie, R. Ruffo, H.L. Peng, D.K. Kim, and Y. Cui: Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 9, 4109 (2009).

    Article  CAS  Google Scholar 

  32. E. Hosono, T. Kudo, I. Honma, H. Matsuda, and H.S. Zhou: Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 9, 1045 (2009).

    Article  CAS  Google Scholar 

  33. X. Xiao, L. Wang, D. Wang, X. He, Q. Peng, and Y. Li: Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2, 923 (2010).

    Article  Google Scholar 

  34. T. Roisnel and J. Rodriguez-Carvajal: WinPLOTR: A windows tool for powder diffraction pattern analysis, in Epdic 7, in European Powder Diffraction, Pts 1 and 2, edited by R. Delhez and E.J. Mittemeijer (Trans Tech Publications Ltd., Zurich, Switzerland, 2001); pp. 118.

    Google Scholar 

  35. N. Kumagai, T. Fujiwara, K. Tanno, and T. Horiba: Physical and electrochemical characterization of quaternary Li-Mn-V-O spinel as positive materials for rechargeable lithium batteries. J. Electrochem. Soc. 143, 1007 (1996).

    Article  CAS  Google Scholar 

  36. E. Iguchi, Y. Tokuda, H. Nakatsugawa, and F. Munakata: Electrical transport properties in LiMn2O4, Li0.95Mn2O4, and LiMn1.95B0.05O4 (B = Al or Ga) around room temperature. J. Appl. Phys. 91, 2149 (2002).

    Article  CAS  Google Scholar 

  37. J.W. Long, B. Dunn, D.R. Rolison, and H.S. White: Three-dimensional battery architectures. Chem. Rev. 104, 4463 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by National 973 project of China (2010CB833100 and 2012CB932504) and the National Natural Science Foundation of China (11105159) and (10905095).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Ling Xiao or Zhong-Bo Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Chen, D., Yan, M. et al. A novel two-step preparation of spinel LiMn2O4 nanowires and its electrochemical performance charaterization. Journal of Materials Research 27, 1750–1754 (2012). https://doi.org/10.1557/jmr.2012.152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.152

Navigation