Skip to main content
Log in

Thermodynamic modeling of La2O3–SrO–Mn2O3–Cr2O3 for solid oxide fuel cell applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermodynamic La–Sr–Mn–Cr–O oxide database is obtained as an extension of thermodynamic descriptions of oxide subsystems using the calculation of phase diagrams approach. Concepts of the thermodynamic modeling of solid oxide phases are discussed. Gibbs energy functions of SrCrO4, Sr2.67Cr2O8, Sr2CrO4, and SrCr2O4 are presented, and thermodynamic model parameters of La–Sr–Mn–Chromite perovskite are given. Experimental solid solubilities and nonstoichiometries in La1−xSrxCrO3−δ and LaMn1−xCrxO3−δ are reproduced by the model. The presented oxide database can be used for applied computational thermodynamics of traditional lanthanum manganite cathode with Cr-impurities. It represents the fundament for extensions to higher orders, aiming on thermodynamic calculations in noble symmetric solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
TABLE II.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. J.C. Ruiz-Morales, D. Marrero-Lόpez, J. Canales-Vázquez, and J.T.S. Irvine: Symmetric and reversible solid oxide fuel cells. RSC Adv. 1, 1403–1414 (2011).

    CAS  Google Scholar 

  2. D.M. Bastidas, S. Tao, and J.T.S. Irvine: A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. J. Mater. Chem. 16, 1603–1605 (2006).

    CAS  Google Scholar 

  3. J.C. Ruiz-Morales, J. Canales-Vázquez, J Peña-Martínez, D. Marrero-López, and P. Núñez: On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochim. Acta 52, 278–284 (2006).

    CAS  Google Scholar 

  4. S.P.S. Badwal, R. Deller, K. Foger, Y. Ramprakash, and J.P. Zhang: Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells. Solid State Ionics 99, 297–310 (1997).

    CAS  Google Scholar 

  5. S.P. Jiang, J.P. Zhang, and K. Foger: Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells–III. Effect of air flow. J. Electrochem. Soc. 148, C447–C455 (2001).

    CAS  Google Scholar 

  6. N. Saunders and A.P. Miodownik: Calphad calculation of phase diagrams. In Pergamon Materials Series; Vol. 1. (Elsevier Science Ltd., Oxford, UK, 1998).

  7. H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics. The CALPHAD Method (Cambridge University Press, Cambridge, UK, 2007).

    Google Scholar 

  8. Z-K. Liu: First-principles calculations and Calphad modeling of thermodynamics. J. Phase Equilib. Diffus. 30, 517–534 (2009).

    CAS  Google Scholar 

  9. A.T. Dinsdale: SGTE data for pure elements. Calphad 15, 317–425 (1991).

    CAS  Google Scholar 

  10. J-O. Andersson, A.F. Guillermet, M. Hillert, B. Jansson, and B. Sundman: A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall. 34, 437 (1986).

    CAS  Google Scholar 

  11. M. Hillert, B. Jansson, and B. Sundman: Application of the compound-energy model to oxide systems. Z. Metallkd. 79, 81–87 (1988).

    CAS  Google Scholar 

  12. M. Hillert: The compound energy formalism. J. Alloys Compd. 320, 161–176 (2001).

    CAS  Google Scholar 

  13. O. Redlich and A.T. Kister: Algebraic representations of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948).

    Google Scholar 

  14. A.N. Grundy, E. Povoden, T. Ivas, and L.J. Gauckler: Calculation of defect chemistry using the CALPHAD approach. Calphad 30, 33–41 (2006).

    Google Scholar 

  15. B. Sundman, B. Jansson, and J-O. Andersson: The thermo-calc databank system. Calphad 9, 153–190 (1985).

    CAS  Google Scholar 

  16. E.A. Filonova, A.N. Demina, and A.N. Petrov: Phase equilibria in the system LaMnO3-SrMnO3-SrCrO4-LacrO3. Russ. J. Inorg. Chem. 52, 771–774 (2007).

    Google Scholar 

  17. A.N. Grundy, B. Hallstedt, and L.J. Gauckler: Thermodynamic assessment of the lanthanum-oxygen system. J. Phase Equilib. 22, 105–113 (2001)

    CAS  Google Scholar 

  18. M. Zinkevich, S. Geupel, F. Aldinger, A. Durygin, S.K. Saxena, M. Yang, and Z-K. Liu: Phase diagram and thermodynamics of the La2O3-Ga2O3 system revisited. J. Phys. Chem. Solids 67, 1901–1907 (2006).

    CAS  Google Scholar 

  19. E. Povoden, A.N. Grundy, and L.J. Gauckler: Thermodynamic reassessment of the Cr-O system in the framework of solid oxide fuel cell (SOFC) research. J. Phase Equilib. Diffus. 27, 353–362 (2006).

    CAS  Google Scholar 

  20. E. Povoden, M. Chen, A.N. Grundy, T. Ivas, and L.J. Gauckler: Thermodynamic assessment of the La-Cr-O system. J. Phase Equilib. Diffus. 30, 12–27 (2009).

    CAS  Google Scholar 

  21. E. Povoden, A.N. Grundy, L.J. Gauckler: Thermodynamic assessment of the Mn-Cr-O system for solid oxide fuel cell (SOFC) materials. Int. J. Mater. Res. 97, 569–578 (2006).

    CAS  Google Scholar 

  22. A.N. Grundy, B. Hallstedt, and L.J. Gauckler: Assessment of the Mn-O system. J. Phase Equilib. 24, 21–39 (2003).

    CAS  Google Scholar 

  23. A.N. Grundy, M. Chen, B. Hallstedt, and L.J. Gauckler: Assessment of the La-Mn-O system. J. Phase Equilib. Diffus. 26, 131–151 (2005).

    CAS  Google Scholar 

  24. A.N. Grundy, B. Hallstedt, and L.J. Gauckler: La1-xMn1-yO3-z perovskites modeled with and without antisite defects using the CALPHAD approach. Solid State Ionics 173, 17–21 (2004).

    CAS  Google Scholar 

  25. A.N. Grundy, B. Hallstedt, and L.J. Gauckler: Experimental phase diagram determination and thermodynamic assessment of the La2O3-SrO system. Acta Mater. 50, 2209–2222 (2002).

    CAS  Google Scholar 

  26. A.N. Grundy, B. Hallstedt, and L.J. Gauckler: Assessment of the Sr-Mn-O system. J. Phase Equilib. Diffus. 25, 311–319 (2004).

    CAS  Google Scholar 

  27. A.N. Grundy, B. Hallstedt, and L.J. Gauckler: Assessment of the La-Sr-Mn-O system. Calphad 28, 191–201 (2004).

    CAS  Google Scholar 

  28. R.D. Shannon and C.T. Prewitt: Effective ionic radii in oxides and fluorides. Acta Crystallogr., Sect. B: Struct. Sci 25, 925–946 (1969).

    CAS  Google Scholar 

  29. K. Hack, (Ed.): The SGTE Casebook: Thermodynamics at Work (Institute of Materials, London, 1996).

    Google Scholar 

  30. H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya: Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites. J. Electrochem. Soc. 138, 1018–1027 (1991).

    CAS  Google Scholar 

  31. K.T. Jacob and K.P. Abraham: Phase relations in the system Sr-Cr-O and thermodynamic properties of SrCrO4 and Sr3Cr2O8. J. Phase Equilib. 21, 46–53 (2000).

    CAS  Google Scholar 

  32. T. Maruyama, T. Inoue, and T. Akashi: Standard Gibbs energies of formation of SrCrO4 and Sr3Cr2O8. Mater. Trans., JIM 39, 1158–1161 (1998).

    CAS  Google Scholar 

  33. A.M. Azad, R. Sudha, and O.M. Sreedharan: The standard Gibbs energies of formation of ACrO4 (A=Ca, Sr or Ba) from emf-measurements. Thermochim. Acta 194, 129–136 (1992).

    CAS  Google Scholar 

  34. R. Akila and K.T. Jacob: The mobility of oxygen in CaF2. J. Appl. Electrochem. 20, 294–300 (1990).

    CAS  Google Scholar 

  35. Y.K. Kisil, N.G. Sharova, and B.V. Slobodin: Phase formation in the system SrO-CrO3-Cr2O3. Inorg. Mater. 25, 1490–1491 (1989).

    Google Scholar 

  36. E. Castillo-Martínez and M.A. Alario-Franco: Revisiting the Sr-Cr(IV)-O system at high pressure and temperature with special reference to Sr3Cr2O7. Solid State Sci. 9, 564–573 (2007).

    Google Scholar 

  37. T. Negas and R.S. Roth: System SrO-Chromium oxide in air and oxygen. J. Res. Nat. Bur. Stand. A Phys. Chem. 73, 431–442 (1969).

    CAS  Google Scholar 

  38. D.H. Peck, M. Miller, and K. Hilpert: Phase diagram studies in the SrO-Cr2O3-La2O3 system in air and under low oxygen partial pressure. Solid State Ionics 123, 59–65 (1999).

    CAS  Google Scholar 

  39. K. Hartl and R. Braungart: Strontiumchromate(V, VI), Sr2.67Va0.33(CrO4)1.33(CrO4)0.67, a high-temperature compound with defect-bariumphosphate-structure. Z. Naturforsch., B: Chem. Sci. 33, 952–953 (1978) [in German].

    Google Scholar 

  40. S. Miyoshi, S. Onuma, A. Kaimai, H. Matsumoto, K. Yashiro, T. Kawada, J. Mizusaki, and H. Yokokawa: Chemical stability of La1-xSrxCrO3 in oxidizing atmospheres. J. Solid State Chem. 177, 4112–4118 (2004).

    CAS  Google Scholar 

  41. S.N. Ruddlesden and P. Popper: The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54–55 (1958).

    CAS  Google Scholar 

  42. D-H. Peck, M. Miller, and K. Hilpert: Vaporization and thermodynamics of La1-xSrxCrO3-δ investigated by Knudsen effusion mass spectrometry. Solid State Ionics 143, 401–412 (2001).

    CAS  Google Scholar 

  43. J. Cheng and A. Navrotsky: Energetics of La1-xAxCrO3-δ perovskites (A = Ca or Sr). J. Solid State Chem. 178, 234–244 (2005).

    CAS  Google Scholar 

  44. J. Mizusaki, S. Yamauchi, K. Fueki, and A. Ishikawa: Nonstoichiometry of the perovskite-type oxide La1-xSrxCrO3-δ. Solid State Ionics 12, 119–124 (1984).

    CAS  Google Scholar 

  45. K. Hilpert, R.W. Steinbrech, F. Boroomand, E. Wessel, F. Meschke, A. Zuev, O. Teller, H. Nickel, and L. Singheiser: Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J. Eur. Cer. Soc. 23, 3009–3020 (2003).

    CAS  Google Scholar 

  46. H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M.E. Brito, Y-P. Xiong, and H. Kishimoto: Thermodynamic considerations on Cr poisoning in SOFC cathodes. Solid State Ionics 177, 3193–3198 (2006).

    CAS  Google Scholar 

  47. L. Morales and A. Caneiro: Evolution of crystal structure with the oxygen content in the LaMn0.9Cr0.1O3+δ (3.00 ≤ 3+δ ≤ 3.12) compound. J. Solid State Chem. 170, 404–410 (2003).

    CAS  Google Scholar 

  48. S.M. Plint, P.A. Connor, S. Tao, and J.T.S. Irvine: Electronic transport in the novel SOFC anode material La1-xSrxCr0.5Mn0.5Oδ. Solid State Ionics 177, 2005–2008 (2006).

    CAS  Google Scholar 

  49. T. Komatsu, R. Chiba, H. Arai, and K. Sato: Chemical compatibility and electrochemical property of intermediate-temperature SOFC cathodes under Cr poisoning condition. J. Power Sources 176, 132–137 (2008).

    CAS  Google Scholar 

  50. D. Risold, B. Hallstedt, and L.J. Gauckler: The strontium-oxygen system. Calphad 20, 353–361 (1996).

    CAS  Google Scholar 

  51. M. Hillert, B. Jansson, B. Sundman, and J. Ågren: A two-sublattice model of molten solutions with different tendency of ionization. Metall. Trans. A 16, 261–266 (1985).

    Google Scholar 

  52. B. Sundman: Modification of the two-sublattice model for liquids. Calphad 15, 109–119 (1991).

    CAS  Google Scholar 

  53. W. Hastie and D.W. Bonnell: A predicitive phase-equilibrium model for multicomponent oxide mixtures. 2. Oxides of Na-K-Ca-Mg-Al-Si. High Temp. Sci. 19, 275–306 (1985).

    CAS  Google Scholar 

  54. D.W. Bonnell and J.W. Hastie: A predictive thermodynamic model for complex high-temperature solution phases II. High Temp. Sci. 26, 313–334 (1989).

    Google Scholar 

  55. A.D. Pelton and P. Chartrand: The modified quasi-chemical model: Part II. Multicomponent solutions. Metall. Mater. Trans. A 32, 1355–1360 (2001).

    Google Scholar 

  56. C.P. Khattak and D.E. Cox: Structural studies of (La, Sr)CrO3 system. Mater. Res. Bull. 12, 463–472 (1977).

    CAS  Google Scholar 

  57. K. Tezuka, Y. Hinatsu, A. Nakamura, T. Inami, Y. Shimojo, and Y. Morii: Magnetic and neutron diffraction study on perovskites La1-xSrxCrO3. J. Solid State Chem. 141, 404–410 (1998).

    CAS  Google Scholar 

  58. K. Tezuka, Y. Hinatsu, K. Oikawa, Y. Shimojo, and Y. Morii: Studies on magnetic properties of La0.95Sr0.05CrO3 and La0.85Sr0.15CrO3 by means of powder neutron diffraction. J. Phys.: Condens. Matter 12, 4151–4160 (2000).

    CAS  Google Scholar 

  59. F. Nakamura, Y. Matsunaga, N. Oba, K. Arai, H. Matsubara, H. Takahashi, and T. Hashimoto: Analysis of magnetic and structural phase transition behaviors of La1-xSrxCrO3 for preparation of phase diagram. Thermochim. Acta 435, 222–229 (2005).

    CAS  Google Scholar 

  60. K.R. Chakraborty, S.M. Yusuf, P.S.R. Krishna, M. Ramanadham, A.K. Tyagi, and V. Pomjakushin: Structural study of La0.75Sr0.25CrO3 at high temperatures. J. Phys.: Condens. Matter 18, 8661–8672 (2006).

    CAS  Google Scholar 

  61. Y. Matsunaga, F. Nakamura, H. Takahashi, and T. Hashimoto: Analysis of relationship between magnetic property and crystal structure of La1-xSrxCrO3 (x=0.13, 0.15). Solid State Commun. 145, 502–506 (2008).

    CAS  Google Scholar 

  62. Y. Matsunaga, H. Kawaji, T. Atake, H. Takahashi, and T. Hashimoto: Magnetization and resistivity in chromium doped manganites. Thermochim. Acta 474, 57–61 (2008).

    CAS  Google Scholar 

  63. O. Cabeza, M. Long, M.A. Bari, C.M. Muirhead, M.G. Francesconi, and C. Greaves: Magnetization resistivity chromium doped manganites. J. Phys.: Condens. Matter 11, 2569–2578 (1999).

    CAS  Google Scholar 

  64. Z. El-Fadli, M.R. Metni, F. Sapiña, E. Martinez, J.V Folgado, D. Beltrán, A. Beltrán: Structural effects of Co and Cr substitution in LaMnO3+δ. J. Mater. Chem. 10, 437–443 (2000).

    CAS  Google Scholar 

  65. M. Tseggai, P. Nordblad, R. Tellgren, H. Rundlöf, G. Andrè, and F. Bourèe: Synthesis, nuclear structure, and magnetic properties of LaCr1-yMnyO3 (y=0, 0.1, 0.2, and 0.3). J. Alloys Compd. 457, 532–540 (2008).

    CAS  Google Scholar 

  66. S.A. Howard, J-K. Yau, and H.U. Anderson: X-ray-powder diffraction structural phase-transition study of La(Cr1-xMnx)O3 (x=0 to 0.25) using the Rietveld method of analysis. J. Am. Ceram Soc. 75, 1685–1687 (1992).

    CAS  Google Scholar 

  67. M. Hrovat, S. Bernik, J. Holc, D. Kuscer, and D. Kolar: Preliminary data on solid solubility between LaCrO3 and LaFeO3 or LaMnO3. J. Mater. Sci. Lett. 16, 143–146 (1997).

    CAS  Google Scholar 

  68. N. Kallel, J. Dhahri, S. Zemni, E. Dhahri, M. Oumezzine, M. Ghedira, and H. Vincent: Effect of Cr doping in La0.7Sr0.3Mn1-xCrxO3 with 0 ≤ x ≤ 0.5. Phys. Status Solidi A 184, 319–325 (2001).

    CAS  Google Scholar 

  69. G. Inden: Determination of chemical and magnetic interchange energies in bcc alloys. I. General treatment. Z. Metallkd. 66, 577–582 (1975).

    CAS  Google Scholar 

  70. M. Hillert and M. Jarl: A model of alloying effects in ferromagnetic metals. Calphad 2, 227–238 (1978).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Povoden-Karadeniz.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povoden-Karadeniz, E., Chen, M., Ivas, T. et al. Thermodynamic modeling of La2O3–SrO–Mn2O3–Cr2O3 for solid oxide fuel cell applications. Journal of Materials Research 27, 1915–1926 (2012). https://doi.org/10.1557/jmr.2012.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.149

Navigation