Abstract
The mechanical properties of submicron scale columnar zinc structures, with average diameters between 130 and 1060 nm, were characterized by uniaxial microcompression tests. The zinc pillars were fabricated by electron beam lithography and electroplating and were found to be generally single crystalline, with a preferred out-of-plane orientation close to the [0001] directions. Post deformation microstructural analysis suggests that the zinc pillars maintain their single-crystalline structure, but without twin boundary formation. Interestingly, the engineering flow stress results indicate that small-scale zinc structures are insensitive to both strain rate and size.
Similar content being viewed by others
References
M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).
O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).
J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater Sci. 56, 654 (2011).
M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).
D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).
C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, and E. Arzt: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319 (2008).
J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).
J.R. Greer and W.D. Nix: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A: Mater. Sci. Process. 80, 1625 (2005).
C.A. Volkert, E.T. Lilleodden, D. Kramer, and J. Weissmuller: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006).
A.T. Jennings, M.J. Burek, and J.R. Greer: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).
D. Kiener, C. Motz, T. Schöberl, M. Jenko, and G. Dehm: Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8, 1119 (2006).
K.S. Ng and A.H.W Ngan: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).
J.Y. Kim and J.R. Greer: Size-dependent mechanical properties of molybdenum nanopillars. Appl. Phys. Lett. 93, 101916 (2008).
J.Y. Kim, D. Jang, and J.R. Greer: Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scr. Mater. 61, 300 (2009).
J.Y. Kim, D. Jang, and J.R. Greer: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355 (2010).
A.S. Schneider, D. Kaufmann, B.G. Clark, C.P. Frick, P.A. Gruber, R. Mönig, O. Kraft, and E. Arzt: Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103, 105501 (2009).
S.M. Han, T. Bozorg-Grayeli, J.R. Groves, and W.D. Nix: Size effects on strength and plasticity of vanadium nanopillars. Scr. Mater. 63, 1153 (2010).
M.J. Burek, A.S. Budiman, Z. Jahed, N. Tamura, M. Kunz, S. Jin, S.M.J Han, G. Lee, C. Zamecnik, and T.Y. Tsui: Fabrication, microstructure, and mechanical properties of tin nanostructures. Mater. Sci. Eng., A 528, 5822 (2011).
M.J. Burek, S. Jin, M.C. Leung, Z. Jahed, J. Wu, A.S. Budiman, N. Tamura, M. Kunz, and T.Y. Tsui: Grain boundary effects on the mechanical properties of bismuth nanostructures. Acta Mater. 59, 4709 (2011).
E. Lilleodden: Microcompression study of Mg (0 0 0 1) single crystal. Scr. Mater. 62, 532 (2010).
C.M. Byer, B. Li, B. Cao, and K.T. Ramesh: Microcompression of single-crystal magnesium. Scr. Mater. 62, 536 (2010).
G.S. Kim, S. Yi, Y. Huang, and E. Lilleodden: Twining and slip activity in magnesium <11-20> single crystal, in Mechanical Behavior at Small Scales—Experiments and Modeling, edited by J. Lou, E. Lilleodden, B. Boyce, L. Lu, P.M. Derlet, D. Weygand, J. Li, M.D. Uchic, and Le Bourhis E. (Mater. Res. Soc. Symp. Proc. Vol. 1224, Warrendale, PA, 2010), 1224-FF05-03.
Q. Yu, Z.W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).
Q. Sun, Q. Guo, X. Yao, L. Xiao, J.R. Greer, and J. Sun: Size effects in strength and plasticity of single-crystalline titanium micropillars with prismatic slip orientation. Scr. Mater. 65, 473 (2011).
J. Ye, R.K. Mishra, A.K. Sachdev, and A.M. Minor: In situ TEM compression testing of Mg and Mg-0.2 wt% Ce single crystals. Scr. Mater. 64, 292 (2011).
S. Jin, M.J. Burek, N.D. Evans, Z. Jahed, and T.Y. Tsui: Fabrication and plastic deformation of sub-micron cadmium structures. Scr. Mater. 66(9), 619–622 (2012).
J.R. Greer and W.D. Nix: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B: Condens. Matter 73, 245410 (2006).
H. Bei, S. Shim, G.M. Pharr, and E.P. George: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).
Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).
H. Bei, S. Shim, M.K. Miller, G.M. Pharr, and E.P. George: Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl. Phys. Lett. 91, 111915 (2007).
J. Zimmermann, S. Van Petegem, H. Bei, D. Grolimund, E.P. George, and H. Van Swygenhoven: Effects of focused ion beam milling and pre-straining on the microstructure of directionally solidified molybdenum pillars: A Laue diffraction analysis. Scr. Mater. 62, 746 (2010).
B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction. 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 2001).
M.J. Burek and J.R. Greer: Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 69 (2010).
K.H. Adams, T. Vreeland Jr., and D.S. Wood: Basal dislocation mobility in zinc single crystals. Mater. Sci. Eng. 2, 37 (1967).
K.H. Adams, R.C. Blish, and T. Vreeland Jr.: Second-order pyramidal slip in zinc single crystals. Mater. Sci. Eng. 2, 201 (1967).
H.S. Rosenbaum: Non-basal slip and twin accommodation in zinc crystals. Acta Metall. 9, 742 (1961).
P.S. Godavarti and K.L. Murty: Creep anisotropy of zinc using impression tests. J. Mater. Sci. Lett. 6, 456 (1987).
J. Greer, J.Y. Kim, and M.J. Burek: The in-situ mechanical testing of nanoscale single-crystalline nanopillars. JOM 61, 19 (2009).
G. Lee, J.Y. Kim, A.S. Budiman, N. Tamura, M. Kunz, K. Chen, M.J. Burek, J.R. Greer, and T.Y. Tsui: Fabrication, structure and mechanical properties of indium nanopillars. Acta Mater. 58, 1361 (2010).
G. Lee, J.Y. Kim, M.J. Burek, J.R. Greer, and T.Y. Tsui: Plastic deformation of indium nanostructures. Mater. Sci. Eng., A 528, 6112 (2011).
Z. Jahed, S. Jin, M.J. Burek, and T.Y. Tsui: Fabrication and buckling behavior of polycrystalline palladium, cobalt, and rhodium nanostructures. Mater. Sci. Eng., A 542, 40–48 (2012).
S.C. Wang, Z. Zhu, and M.J. Starink: Estimation of dislocation densities in cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models. J. Microsc. 217, 174 (2005).
J.G. Antonopoulos, T. Karakostas, P. Komninou, and P. Delavignette: Dislocation movements and deformation twinning in zinc. Acta Metall. 36, 2493 (1988).
J.J. Gilman: Deformation of symmetric zinc bicrystals. Acta Metall. 1, 426 (1953).
T. Kawada: On the plastic deformation of zinc bicrystal I. J. Phys. Soc. Jpn. 6, 362 (1951).
Acknowledgments
T.Y. Tsui thanks Canadian NSERC Discovery, NSERC Research Tools and Instruments, and the Canada Foundation for Innovation (CFI) for the support of this research. The authors thank Dr. Aju Jugessur and Edward Xu for assistance with operation of the Leica EBPG5000+ electron beam lithography system and gratefully acknowledge critical support and infrastructure provided for this work by the Emerging Communications Technology Institute at the University of Toronto. The transmission electron microscopy analysis described in this paper was performed at the Canadian Center for Electron Microscopy (CCEM), which is operated by the Brockhouse Institute for Materials Research of McMaster University. The CCEM is supported by NSERC and other government agencies. T.Y. Tsui would like to thank Professor Joost Vlassak for valuable discussions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jin, S., Xie, S., Burek, M.J. et al. Microstructure and mechanical properties of sub-micron zinc structures. Journal of Materials Research 27, 2140–2147 (2012). https://doi.org/10.1557/jmr.2012.146
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.146