Skip to main content
Log in

Microstructure and mechanical properties of sub-micron zinc structures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical properties of submicron scale columnar zinc structures, with average diameters between 130 and 1060 nm, were characterized by uniaxial microcompression tests. The zinc pillars were fabricated by electron beam lithography and electroplating and were found to be generally single crystalline, with a preferred out-of-plane orientation close to the [0001] directions. Post deformation microstructural analysis suggests that the zinc pillars maintain their single-crystalline structure, but without twin boundary formation. Interestingly, the engineering flow stress results indicate that small-scale zinc structures are insensitive to both strain rate and size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).

    Article  CAS  Google Scholar 

  2. O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).

    Article  CAS  Google Scholar 

  3. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater Sci. 56, 654 (2011).

    Article  CAS  Google Scholar 

  4. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).

    Article  CAS  Google Scholar 

  5. D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).

    Article  CAS  Google Scholar 

  6. C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, and E. Arzt: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319 (2008).

    Article  CAS  Google Scholar 

  7. J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).

    Article  CAS  Google Scholar 

  8. J.R. Greer and W.D. Nix: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A: Mater. Sci. Process. 80, 1625 (2005).

    Article  CAS  Google Scholar 

  9. C.A. Volkert, E.T. Lilleodden, D. Kramer, and J. Weissmuller: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006).

    Article  CAS  Google Scholar 

  10. A.T. Jennings, M.J. Burek, and J.R. Greer: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).

    Article  CAS  Google Scholar 

  11. D. Kiener, C. Motz, T. Schöberl, M. Jenko, and G. Dehm: Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8, 1119 (2006).

    Article  CAS  Google Scholar 

  12. K.S. Ng and A.H.W Ngan: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).

    Article  CAS  Google Scholar 

  13. J.Y. Kim and J.R. Greer: Size-dependent mechanical properties of molybdenum nanopillars. Appl. Phys. Lett. 93, 101916 (2008).

    Article  CAS  Google Scholar 

  14. J.Y. Kim, D. Jang, and J.R. Greer: Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scr. Mater. 61, 300 (2009).

    Article  CAS  Google Scholar 

  15. J.Y. Kim, D. Jang, and J.R. Greer: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355 (2010).

    Article  CAS  Google Scholar 

  16. A.S. Schneider, D. Kaufmann, B.G. Clark, C.P. Frick, P.A. Gruber, R. Mönig, O. Kraft, and E. Arzt: Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103, 105501 (2009).

    Article  CAS  Google Scholar 

  17. S.M. Han, T. Bozorg-Grayeli, J.R. Groves, and W.D. Nix: Size effects on strength and plasticity of vanadium nanopillars. Scr. Mater. 63, 1153 (2010).

    Article  CAS  Google Scholar 

  18. M.J. Burek, A.S. Budiman, Z. Jahed, N. Tamura, M. Kunz, S. Jin, S.M.J Han, G. Lee, C. Zamecnik, and T.Y. Tsui: Fabrication, microstructure, and mechanical properties of tin nanostructures. Mater. Sci. Eng., A 528, 5822 (2011).

    Article  CAS  Google Scholar 

  19. M.J. Burek, S. Jin, M.C. Leung, Z. Jahed, J. Wu, A.S. Budiman, N. Tamura, M. Kunz, and T.Y. Tsui: Grain boundary effects on the mechanical properties of bismuth nanostructures. Acta Mater. 59, 4709 (2011).

    Article  CAS  Google Scholar 

  20. E. Lilleodden: Microcompression study of Mg (0 0 0 1) single crystal. Scr. Mater. 62, 532 (2010).

    Article  CAS  Google Scholar 

  21. C.M. Byer, B. Li, B. Cao, and K.T. Ramesh: Microcompression of single-crystal magnesium. Scr. Mater. 62, 536 (2010).

    Article  CAS  Google Scholar 

  22. G.S. Kim, S. Yi, Y. Huang, and E. Lilleodden: Twining and slip activity in magnesium <11-20> single crystal, in Mechanical Behavior at Small Scales—Experiments and Modeling, edited by J. Lou, E. Lilleodden, B. Boyce, L. Lu, P.M. Derlet, D. Weygand, J. Li, M.D. Uchic, and Le Bourhis E. (Mater. Res. Soc. Symp. Proc. Vol. 1224, Warrendale, PA, 2010), 1224-FF05-03.

  23. Q. Yu, Z.W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma: Strong crystal size effect on deformation twinning. Nature 463, 335 (2010).

    Article  CAS  Google Scholar 

  24. Q. Sun, Q. Guo, X. Yao, L. Xiao, J.R. Greer, and J. Sun: Size effects in strength and plasticity of single-crystalline titanium micropillars with prismatic slip orientation. Scr. Mater. 65, 473 (2011).

    Article  CAS  Google Scholar 

  25. J. Ye, R.K. Mishra, A.K. Sachdev, and A.M. Minor: In situ TEM compression testing of Mg and Mg-0.2 wt% Ce single crystals. Scr. Mater. 64, 292 (2011).

    Article  CAS  Google Scholar 

  26. S. Jin, M.J. Burek, N.D. Evans, Z. Jahed, and T.Y. Tsui: Fabrication and plastic deformation of sub-micron cadmium structures. Scr. Mater. 66(9), 619–622 (2012).

    Article  CAS  Google Scholar 

  27. J.R. Greer and W.D. Nix: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B: Condens. Matter 73, 245410 (2006).

    Article  CAS  Google Scholar 

  28. H. Bei, S. Shim, G.M. Pharr, and E.P. George: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).

    Article  CAS  Google Scholar 

  29. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).

    Article  CAS  Google Scholar 

  30. H. Bei, S. Shim, M.K. Miller, G.M. Pharr, and E.P. George: Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl. Phys. Lett. 91, 111915 (2007).

    Article  CAS  Google Scholar 

  31. J. Zimmermann, S. Van Petegem, H. Bei, D. Grolimund, E.P. George, and H. Van Swygenhoven: Effects of focused ion beam milling and pre-straining on the microstructure of directionally solidified molybdenum pillars: A Laue diffraction analysis. Scr. Mater. 62, 746 (2010).

    Article  CAS  Google Scholar 

  32. B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction. 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 2001).

    Google Scholar 

  33. M.J. Burek and J.R. Greer: Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 69 (2010).

    Article  CAS  Google Scholar 

  34. K.H. Adams, T. Vreeland Jr., and D.S. Wood: Basal dislocation mobility in zinc single crystals. Mater. Sci. Eng. 2, 37 (1967).

    Article  CAS  Google Scholar 

  35. K.H. Adams, R.C. Blish, and T. Vreeland Jr.: Second-order pyramidal slip in zinc single crystals. Mater. Sci. Eng. 2, 201 (1967).

    Article  CAS  Google Scholar 

  36. H.S. Rosenbaum: Non-basal slip and twin accommodation in zinc crystals. Acta Metall. 9, 742 (1961).

    Article  CAS  Google Scholar 

  37. P.S. Godavarti and K.L. Murty: Creep anisotropy of zinc using impression tests. J. Mater. Sci. Lett. 6, 456 (1987).

    Article  CAS  Google Scholar 

  38. J. Greer, J.Y. Kim, and M.J. Burek: The in-situ mechanical testing of nanoscale single-crystalline nanopillars. JOM 61, 19 (2009).

    Article  Google Scholar 

  39. G. Lee, J.Y. Kim, A.S. Budiman, N. Tamura, M. Kunz, K. Chen, M.J. Burek, J.R. Greer, and T.Y. Tsui: Fabrication, structure and mechanical properties of indium nanopillars. Acta Mater. 58, 1361 (2010).

    Article  CAS  Google Scholar 

  40. G. Lee, J.Y. Kim, M.J. Burek, J.R. Greer, and T.Y. Tsui: Plastic deformation of indium nanostructures. Mater. Sci. Eng., A 528, 6112 (2011).

    Article  CAS  Google Scholar 

  41. Z. Jahed, S. Jin, M.J. Burek, and T.Y. Tsui: Fabrication and buckling behavior of polycrystalline palladium, cobalt, and rhodium nanostructures. Mater. Sci. Eng., A 542, 40–48 (2012).

    Article  CAS  Google Scholar 

  42. S.C. Wang, Z. Zhu, and M.J. Starink: Estimation of dislocation densities in cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models. J. Microsc. 217, 174 (2005).

    Article  CAS  Google Scholar 

  43. J.G. Antonopoulos, T. Karakostas, P. Komninou, and P. Delavignette: Dislocation movements and deformation twinning in zinc. Acta Metall. 36, 2493 (1988).

    Article  CAS  Google Scholar 

  44. J.J. Gilman: Deformation of symmetric zinc bicrystals. Acta Metall. 1, 426 (1953).

    Article  CAS  Google Scholar 

  45. T. Kawada: On the plastic deformation of zinc bicrystal I. J. Phys. Soc. Jpn. 6, 362 (1951).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T.Y. Tsui thanks Canadian NSERC Discovery, NSERC Research Tools and Instruments, and the Canada Foundation for Innovation (CFI) for the support of this research. The authors thank Dr. Aju Jugessur and Edward Xu for assistance with operation of the Leica EBPG5000+ electron beam lithography system and gratefully acknowledge critical support and infrastructure provided for this work by the Emerging Communications Technology Institute at the University of Toronto. The transmission electron microscopy analysis described in this paper was performed at the Canadian Center for Electron Microscopy (CCEM), which is operated by the Brockhouse Institute for Materials Research of McMaster University. The CCEM is supported by NSERC and other government agencies. T.Y. Tsui would like to thank Professor Joost Vlassak for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Burek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, S., Xie, S., Burek, M.J. et al. Microstructure and mechanical properties of sub-micron zinc structures. Journal of Materials Research 27, 2140–2147 (2012). https://doi.org/10.1557/jmr.2012.146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.146

Navigation