Skip to main content
Log in

Micrometer-sized quasicrystals in the Al85Ni5Y6Co2Fe2 metallic glass: A TEM study and a brief discussion on the formability of quasicrystals in bulk and marginal glass-forming alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Large quasicrystals up to ∼10 μm in size with a volume fraction of ∼30% have been identified in a nitrogen gas-atomized marginal glass-forming alloy Al85Ni5Y6Co2Fe2 by detailed transmission electron microscopy. The formation of the large quasicrystal (Q) phase is discussed through the configuration of the valence electrons of its constituent elements, and the thermodynamic and kinetic factors associated with the solidification of this marginal glass-forming alloy during gas atomization. The finding leads to an important inference that marginal glass-forming alloys could be ideal systems for the formation of bulk quasicrystals under appropriate kinetic conditions. The Q phase is stable up to ∼500 °C and decomposes thereafter. The activation energy for the decomposition of the Q phase is similar to the self-diffusion of Al. Two new intermetallic phases associated with the formation and decomposition of the Q phase have also been identified and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE II.
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn: Metallic phase with long-range orientational order and no translational symmetry. Phy. Rev. Lett. 53, 1951 (1984).

    Article  CAS  Google Scholar 

  2. C. Janot, ed: Quasicrystals: A Primer, 2nd ed. (Oxford University Press Inc., New York, 1994).

    Google Scholar 

  3. A.P. Tsai: Icosahedral clusters, icosahedral order ad stability of quasicrystals—a view of metallurgy. Sci. Technol. Adv. Mater. 9, 013008 (2008).

    Article  CAS  Google Scholar 

  4. D.V. Louzguine-Luzgin and A. Inoue: Formation and properties of quasicrystals. Annu. Rev. Mater. Res. 38, 403 (2008).

    Article  CAS  Google Scholar 

  5. A. Inoue and H. Kimura: High-strength aluminum alloys containing nanoquasicrystalline particles. Mater. Sci. Eng. A 286, 1 (2000).

    Article  Google Scholar 

  6. A. Singh, M. Nakamura, M. Watanabe, A. Kato, and A.P. Tsai: Quasicrystal-strengthened Mg-Zn-Y alloys by extrusion. Scr. Mater. 49, 417 (2003).

    Article  CAS  Google Scholar 

  7. J.M. Dubois: Useful Quasicrystals. (World Scientific Publishing Co. Pte. Ltd., 2005 p. 386).

    Book  Google Scholar 

  8. A.M. Viano, E.H. Majzoub, R.M. Stroud, M.J. Kramer, S.T. Misture, P.C. Gibbons, and K.F. Kelton: Hydrogen absorption and storage in quasicrystalline and related Ti–Zr–Ni alloys. Philos. Mag. A 78, 131 (1998).

    Article  CAS  Google Scholar 

  9. A. Takasaki and K.F. Kelton: Hydrogen storage in Ti-based quasicrystal powders produced by mechanical alloying. Int. J. Hydrogen. Energy 31, 183 (2006).

    Article  CAS  Google Scholar 

  10. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  11. W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).

    Article  CAS  Google Scholar 

  12. M.W. Chen, T. Zhang, A. Inoue, A. Sakai, and T. Sakurai: Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Appl. Phys. Lett. 75, 1697 (1999).

    Article  CAS  Google Scholar 

  13. B.S. Murty, and K. Hono: Nanoquasicrystallization of Zr-based metallic glasses. Mater. Sci. Eng. A 312, 253 (2001).

    Article  Google Scholar 

  14. B.S. Murty, D.H. Ping, K. Hono, and A. Inoue: Influence of oxygen on the crystallization behaviour of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta Mater. 48, 3985 (2000).

    Article  CAS  Google Scholar 

  15. B.S. Murty, W.T. Kim, D.H. Kim, and K. Hono: Nanocrystalline icosahedral phase formation in melt spun Ti-Zr-Ni alloys. Mater. Trans., JIM 42, 372 (2001).

    Article  CAS  Google Scholar 

  16. A.P. Tsai, A. Inoue, and T. Masumoto: Icosahedral, decagonal and amorphous phases in Al-Cu-M (M = transition metal) systems. Mater. Trans., JIM 30, 463 (1989).

    Article  CAS  Google Scholar 

  17. A.P. Tsai, A. Inoue, and T. Masumoto: A stable decagonal quasicrystal in the Al–Cu–Co system. Mater. Trans., JIM 30, 300 (1989).

    Article  CAS  Google Scholar 

  18. U. Lemmerz, B. Grushko, C. Freiburg, and M. Jansen: Study of decagonal quasi-crystalline phase-formation in the AL-Ni-Fe alloy system. Philos. Mag. Lett. 69, 141 (1994).

    Article  CAS  Google Scholar 

  19. B. Grushko, U. Lemmerz, K. Fischer, and C. Freiburg: The low-temperature instability of the decagonal phase in Al-Ni-Fe. Phys. Status. Solidi. A 155, 17 (1996).

    Article  CAS  Google Scholar 

  20. D.K. Misra, R.S. Tiwari, and O.N. Srivastava: Amorphous to icosahedral phase transformation in rapidly quenched al-Cu-V and al-Cu-Ti alloys. Phys. Status. Solidi. A 200, 326 (2003).

    Article  CAS  Google Scholar 

  21. C.H. Shek, G. He, Z. Bian, G.L. Chen, and J.K.L Lai: Effect of composition and cooling rate on structures and properties of quenched or cast Al-V-Fe alloys. Mater. Sci. Eng. A 357, 20 (2003).

    Article  CAS  Google Scholar 

  22. Y. He, S.J. Poon, and G.J. Shiflet: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).

    Article  CAS  Google Scholar 

  23. A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto: New amorphous-alloys with good ductility in Al-Y-M and al-La-M (M=Fe, Co, Ni or Cu) systems. Jpn. J. Appl. Phys. 27, L280 (1988).

    Article  CAS  Google Scholar 

  24. B.J. Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang, and E. Ma: Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scr. Mater. 61, 423 (2009).

    Article  CAS  Google Scholar 

  25. G. Wilde, H. Sieber, and J.H. Perepezko: Glass formation versus nanocrystallization in an Al92Sm8 alloy. Scr. Mater. 40, 779 (1999).

    Article  CAS  Google Scholar 

  26. A. Inoue, N. Nishiyama, and H. Kimura: Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans., JIM 38, 179 (1997).

    Article  CAS  Google Scholar 

  27. M. Yan, J. Zou, and J. Shen: Effect over-doped yttrium microstructure, mechanical properties thermal properties a Zr-based metallic glass. Acta Mater. 54, 3627 (2006).

    Article  CAS  Google Scholar 

  28. H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma: Discovery of inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005).

    Article  CAS  Google Scholar 

  29. P.A. Bancel and P.A. Heiney: Icosahedral Aluminum transition-metal alloys. Phys. Rev. B 33, 7917 (1986).

    Article  CAS  Google Scholar 

  30. A.P. Smith and N.W. Ashcroft: Pseudopotential and quasicrystals. Phys. Rev. Lett. 59, 1365 (1987).

    Article  CAS  Google Scholar 

  31. M. Yan, J.Q. Wang, G.B. Schaffer, and M.A. Qian: Solidification of nitrogen-atomized Al86Ni6Y4.5Co2La1.5 metallic glass. J. Mater. Res. 26, 944 (2011).

    Article  CAS  Google Scholar 

  32. P. Dong, W.L. Hou, X.C. Chang, M.X. Quan, and J.Q. Wang: Amorphous and nanostructured Al85Ni5Y6Co2Fe2 powder prepared by nitrogen gas-atomization. J. Alloys Compd. 436, 118 (2007).

    Article  CAS  Google Scholar 

  33. P.P. Choi, Y.S. Kwon, J.S. Kim, and T. Al-Lassab: Transmission electron microscopy and atom probe specimen preparation from mechanically alloyed powder using the focused ion-beam lift-out technique. J. Electron Microsc. 56, 43 (2007).

    Article  CAS  Google Scholar 

  34. N.I. Kato: Reducing focused ion beam damage to transmission electron microscopy samples. J. Electron Microsc. 53, 451 (2007).

    Article  CAS  Google Scholar 

  35. L.X. He, Y.K. Wu, and K.H. Kuo: Decagonal quasicrystals with different periodicities along the 10-fold axis in rapidly solidified Al65Cu20Mn15, Al65Cu20Fe15, Al65Cu20Co15 or Al65Cu20Ni15. J. Mater. Sci. Lett. 7, 1284 (1988).

    Article  CAS  Google Scholar 

  36. A. Inoue: Bulk Amorphous Alloys - Preparation and Fundamental Characteristics. (Trans Tech Publications Ltd., Switzerland, 1998).

    Google Scholar 

  37. J.A. Gard: Interpretation of electron diffraction patterns. in Electron Microscopy in Mineralogy edited by H.R. Wenk, P.E. Champness, J.M. Cowley, A.H. Heuer, G. Thomas, N.J. Tighe (Springer, Berlin, 1976 p. 52).

  38. M. Yan, J. Shen, and J. Zou: Cooling rate effects on the microstructure and phase formation in Zr51Cu20.7Ni12Al16.3 bulk metallic glass. Sci. Tech. Adv. Mater. 7, 806 (2006).

    Article  CAS  Google Scholar 

  39. M. Yan, J. Zou, and J. Shen: New crystalline phases formed in a slowly cooled Zr-based metallic glass. J. Alloys Compd. 433, 120 (2007).

    Article  CAS  Google Scholar 

  40. T.B. Massalski and U. Mizutani: Electronic structure of Hume-Rothery phases. Prog. Mater. Sci. 22, 151 (1978).

    Article  CAS  Google Scholar 

  41. A.P. Tsai, A. Inoue, and T. Masumoto: A stable quasi-crystal in Al-Cu-Fe system. Jpn. J. Appl. Phys. 26, 1505 (1987).

    Article  Google Scholar 

  42. S.J. Poon: Electronic properties of quasi-crystals-an experimental review. Adv. Phys. 41, 303 (1992).

    Article  CAS  Google Scholar 

  43. J.B. Qiang, D.H. Wang, C.M. Bao, Y.M. Wang, W.P. Xu, M.L. Song, and C. Dong: Formation rule for Al-based ternary quasicrystals: Example of Al-Ni-Fe decagonal phase. J. Mater. Res. 16, 2653 (2001).

    Article  CAS  Google Scholar 

  44. J.B. Qiang: Formation criteria of ternary quasicrystals and their applications in the Al–Ni–Fe and TiZr–Ni systems. Ph.D. Thesis, Dalian Institute of Technology, Dalian, China, 2002.

    Google Scholar 

  45. Y. Lei, J.M. Dubois, M. Calvo-Dahlborg, C. Dong, and Z. Zhang: The formation of an Al-Cu-Co type decagonal quasicrystal in an [AlCuFe]-[AlCoNi] pseudo-binary alloy system. Philos. Mag. 86, 475 (2006).

    Article  CAS  Google Scholar 

  46. J.B. Qiang, Y.M. Wang, D.H. Wang, M. Kramer, P. Thiel, and C. Dong: Quasicrystals in the Ti-Zr-Ni alloy system. J. Non-Crys. Solids 334 and 223 (2004).

    Article  CAS  Google Scholar 

  47. C. Kittel: Introduction to solid State Physics, 7th ed. (John Wiley, New York, 1996).

    Google Scholar 

  48. X.H. Lin, W.L. Johnson, and W.K. Rhim: Effect of oxygen impurity on crystallization of an undercooled bulk glass-forming Zr-Ti-Cu-Ni-Al alloy. Mater. Trans., JIM 38, 473 (1997).

    Article  CAS  Google Scholar 

  49. J. Eckert, N. Mattern, M. Zinkevitch, and M. Seidel: Crystallization behavior and phase formation in Zr-Al-Cu-Ni metallic glass containing oxygen. Mater. Trans., JIM 39, 623 (1998).

    Article  CAS  Google Scholar 

  50. A. Gebert, J. Eckert, and L. Schultz: Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu7.5Ni10 metallic glass. Acta Mater. 46, 5475 (1998).

    Article  CAS  Google Scholar 

  51. H. Chen, Q. Wang, Y.M. Wang, J.B. Qiang, and C. Dong: Composition rule for Al-transition metal binary quasicrystals. Philos. Mag. 90, 3935 (2010).

    Article  CAS  Google Scholar 

  52. R.W. Cahn and P. Haasen: Physical Metallurgy, 4th ed. (Amsterdam, North-Holland, 1996).

    Google Scholar 

  53. T. Takagi, T. Ohkubo, Y. Hirotsu, Y. Hirotsu, B.S. Murty, K. Hono, and D. Shindo: Local structure of amorphous Zr70Pd30 alloy studied by electron diffraction. Appl. Phys. Lett. 79, 485 (2001).

    Article  CAS  Google Scholar 

  54. D.B. Miracle, T. Egami, K.M. Flores, and K.F. Kelton: Structural aspects of metallic glasses. MRS Bull. 32, 629 (2007).

    Article  CAS  Google Scholar 

  55. R. Busch, A. Masuhr, and W.L. Johnson: Thermodynamics and kinetics of Zr–Ti–Cu–Ni–Be bulk metallic glass-forming liquids. Mater. Sci. Eng. A 304–, 97 (2001).

    Article  Google Scholar 

  56. U. Kuhn, K. Eymann, N. Mattern, J. Eckert, A. Gebert, B. Bartusch, and L. Schultz: Limited quasicrystal formation in Zr–Ti–Cu–Ni–Al bulk metallic glasses. Acta Mater. 54, 4685 (2006).

    Article  CAS  Google Scholar 

  57. A.R. Miedema, F.R. de Boer, and P.F. de Chatel: Empirical description of role of electronegativity in alloy formation. J. Phys. F: Met. Phys. 3, 1558 (1973).

    Article  CAS  Google Scholar 

  58. T.S. Lundy and J.F. Murdock: Diffusion of Al26 and Mn54 in aluminum. J. Appl. Phys. 33, 1671 (1962).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council (ARC) and the National Natural Science Foundation of China (No. 51131006). Dr. M. Yan acknowledges the support of a Queensland Smart Future Fellowship (Early Career). We also acknowledge the technical, sci-entificand financial assistance from the AMMRF. Constructive discussions with Prof. C. Dong and Dr. J.B. Qiang of Dalian Institute of Technology, China and Dr. G. Ji of LILLE 1 University Science and Technology, France are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, M., Wang, J.Q., Kong, C. et al. Micrometer-sized quasicrystals in the Al85Ni5Y6Co2Fe2 metallic glass: A TEM study and a brief discussion on the formability of quasicrystals in bulk and marginal glass-forming alloys. Journal of Materials Research 27, 2131–2139 (2012). https://doi.org/10.1557/jmr.2012.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.140

Navigation