Skip to main content
Log in

Superhard transition metal tetranitrides: XN4 (X = Re, Os, W)

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural, mechanical, and electronic properties of rhenium, osmium, and tungsten tetranitrides, XN4 (X = Re, Os, W) with the orthorhombic ReP4-type structure have been investigated by first-principles calculations using density functional plane-wave pseudopotential method. The calculated formation enthalpies and elastic constants show that these tetranitrides are energetically and mechanically stable. It is appeared from the calculated band structures and density of states that ReN4 and new proposed WN4 are metallic, while OsN4 is semiconductor with a band gap of 0.64 eV. The hardness values of all compounds obtained from different hardness methods indicate that these tetranitrides are superhard materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
TABLE II.
TABLE III.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE IV.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. V.L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D.C. Rubie: Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78, 1385 (2001).

    Article  CAS  Google Scholar 

  2. A.G. Thornton and J. Wilks: Clean surface reactions between diamond and steel. Nature 274, 792 (1978).

    Article  CAS  Google Scholar 

  3. J.J. Gilman, R.W. Cumberland, and R.B. Kaner: Design of hard crystals. Int. J. Refract. Met. Hard Mater. 24, 1 (2006).

    Article  CAS  Google Scholar 

  4. J. Haines, J.M. Leger, and G. Bocqillon: Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31, 1 (2001).

    Article  CAS  Google Scholar 

  5. R.B. Kaner, J.J. Gilman, and S.H. Tolbert: Designing superhard materials. Science 308, 1268 (2005).

    Article  CAS  Google Scholar 

  6. F. Peng, Q. Liu, H. Fu, and X. Yang: Electronic and thermodynamic properties of ReB2 under high pressure and temperature. Solid State Commun. 149, 56 (2009).

    Article  CAS  Google Scholar 

  7. Z. Wu, X. Hao, X. Liu, and J. Meng: Structures and elastic properties of OsN2 investigated via first-principles density functional calculations. Phys. Rev. B: Condens. Matter 75, 054115 (2007).

    Article  CAS  Google Scholar 

  8. H. Sun, S.H. Jhi, D. Roundy, M.L. Cohen, and S.G. Louie: Structural forms of cubic BC2N. Phys. Rev. B: Condens. Matter 64, 094108 (2001).

    Article  CAS  Google Scholar 

  9. D.M. Teter: Computational alchemy: The search for new superhard materials. MRS Bull. 23, 22 (1998).

    Article  CAS  Google Scholar 

  10. D.M. Teter and R.J. Hemley: Low-compressibility carbon nitrides. Science 271, 53 (1996).

    Article  CAS  Google Scholar 

  11. Q. Li, M. Wang, A.R. Oganov, T. Cui, Y.M. Ma, and G.T. Zou: Rhombohedral superhard structure of BC2N. J. Appl. Phys. 105, 053514 (2009).

    Article  CAS  Google Scholar 

  12. J.B. Levine, S.H. Tolbert, and R.B. Kaner: Advancements in the search for superhard ultra-incompressible metal borides. Adv. Funct. Mater. 19, 3519–3533 (2009).

    Article  CAS  Google Scholar 

  13. J.B. Levine, S.L. Nguyen, H.I. Rasool, J.A. Wright, S.E. Brown, and R.B. Kaner: Preparation and properties of metallic, superhard rhenium diboride crystals. J. Am. Chem. Soc. 130, 16953 (2008).

    Article  CAS  Google Scholar 

  14. W.J. Zhao and Y.X. Wang: Elastic stability and electronic structure of low energy tetragonal and monoclinic PdN2 and PtN2. Chin. Phys. B 18, 3934 (2009).

    Article  CAS  Google Scholar 

  15. Y.X. Wang, M. Arai, T. Sasaki, and C.Z. Fan: Ab initio study of monoclinic iridium nitride as a high bulk modulus compound. Phys. Rev. B: Condens. Matter 75, 104110 (2007).

    Article  CAS  Google Scholar 

  16. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B: Condens. Matter 76, 054115 (2007).

    Article  CAS  Google Scholar 

  17. A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, and H.K. Mao: Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 96, 155501 (2006).

    Article  CAS  Google Scholar 

  18. R. Yu, Q. Zhan, and X.F. Zhang: Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor. Appl. Phys. Lett. 88, 051913 (2006).

    Article  CAS  Google Scholar 

  19. H.Y. Gou, L. Hou, J.W. Zhang, G.F. Sun, L.H. Gao, and F.M. Gao: Theoretical hardness of PtN2 with pyrite structure. Appl. Phys. Lett. 89, 141910 (2006).

    Article  CAS  Google Scholar 

  20. R. Yu and X.F. Zhang: Family of noble metal nitrides: First principles calculations of the elastic stability. Phys. Rev. B: Condens. Matter 72, 054103 (2005).

    Article  CAS  Google Scholar 

  21. X.F. Hao, Y.H. Xu, Z.J. Wu, D.F. Zhou, X.J. Liu, X.Q. Cao, and J. Meng: Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study. Phys. Rev. B: Condens. Matter 74, 224112 (2006).

    Article  CAS  Google Scholar 

  22. Y.C. Liang and B. Zhang: Mechanical and electronic properties of superhard ReB2. Phys. Rev. B: Condens. Matter 76, 132101 (2007).

    Article  CAS  Google Scholar 

  23. Y.X. Wang: Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations. Appl. Phys. Lett. 91, 101904 (2007).

    Article  CAS  Google Scholar 

  24. R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, and R.B. Kaner: Osmium diboride, an ultra-incompressible, hard material. J. Am. Chem. Soc. 127, 7264 (2005).

    Article  CAS  Google Scholar 

  25. H.Y. Gou, L. Hou, J.W. Zhang, and F.M. Gao: Pressure-induced incompressibility of ReC and effect of metallic bonding on its hardness. Appl. Phys. Lett. 92, 241901 (2008).

    Article  CAS  Google Scholar 

  26. Y.X. Wang: Ultra-incompressible and hard technetium carbide and rhenium carbide: First-principles prediction. Phys. Status Solidi RRL 2, 126 (2008).

    Article  CAS  Google Scholar 

  27. X.J. Guo, B. Xu, J.L. He, D.L. Yu, Z.Y. Liu, and Y.J. Tian: Structure and mechanical properties of osmium carbide: First-principles calculations. Appl. Phys. Lett. 93, 041904 (2008).

    Article  CAS  Google Scholar 

  28. Q.F. Gu, G. Krauss, and W. Steurer: Transition metal borides: Superhard versus ultra-incompressible. Adv. Mater. 20, 3620 (2008).

    Article  CAS  Google Scholar 

  29. M. Zhang, M. Wang, T. Cui, Y.M. Ma, Y.L. Niu, and G.T. Zou: Electronic structure, phase stability, and hardness of the osmium borides, carbides, nitrides, and oxides: First-principles calculations. J. Phys. Chem. Solids 69, 2096 (2008).

    Article  CAS  Google Scholar 

  30. Z. Wen-Jie, X. Hong-Bin, and W. Yuang-Xu: Prediction of a superhard material of ReN4 with a high shear modulus. Chin. Phys. B 19 (1), 016201 (2010).

    Article  Google Scholar 

  31. W.J. Zhao, H.B. Xu, and Y.X. Wang: A hard semiconductor OsN4 with high elastic constant c44. Phys. Status Solidi RRL 3, 272 (2009).

    Article  CAS  Google Scholar 

  32. E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H.K. Mao, and R.J. Hemley: Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 3, 294 (2004).

    Article  CAS  Google Scholar 

  33. J.C. Crowhurst, A.F. Goncharov, B. Sadigh, C.L. Evans, P.G. Morrall, J.L. Ferreira, and A.J. Nelson: Synthesis and characterization of the nitrides of platinum and iridium. Science 311, 1275 (2006).

    Article  CAS  Google Scholar 

  34. A.F. Guillermet, J. Haglund, and G. Grimvall: Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure. Phys. Rev. B: Condens. Matter 48, 11673 (1993).

    Article  CAS  Google Scholar 

  35. J.C. Crowhurst, A.F. Goncharov, B. Sadigh, J.M. Zaug, D. Aberg, Y. Meng, and V.B. Prakapenka: Synthesis and characterization of nitrides of iridium and palladium. J. Mater. Res. 23, 1 (2008).

    Article  CAS  Google Scholar 

  36. B.R. Sahu and L. Kleinman: PtN: A zinc-blende metallic transition-metal compound. Phys. Rev. B: Condens. Matter 71, 041101 (2005).

    Article  CAS  Google Scholar 

  37. J. Uddin and G.E. Scuseria: Structures and electronic properties of platinum nitride by density functional theory. Phys. Rev. B: Condens. Matter 72, 035101 (2005).

    Article  CAS  Google Scholar 

  38. M.B. Kanoun and S. Goumri-Said: Electronic properties of the binary noble metal nitride PtN: First-principles calculations. Phys. Rev. B: Condens. Matter 72, 113103 (2005).

    Article  CAS  Google Scholar 

  39. R. Yu and X.F. Zhang: Platinum nitride with fluorite structure. Appl. Phys. Lett. 86, 121913 (2005).

    Article  CAS  Google Scholar 

  40. A.D. Hernandez, J.A. Montoya, G. Profeta, and S. Scandolo: First-principles investigation of the electron-phonon interaction in OsN2: Theoretical prediction of superconductivity mediated by N-N covalent bonds. Phys. Rev. B: Condens. Matter 77, 092504 (2008).

    Article  CAS  Google Scholar 

  41. J.C. Zheng: Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN. Phys. Rev. B: Condens. Matter 72, 052105 (2005).

    Article  CAS  Google Scholar 

  42. S.K.R. Patil, S.V. Khare, B.R. Tuttle, J.K. Bording, and S. Kodambaka: Mechanical stability of possible structures of PtN investigated using first-principles calculations. Phys. Rev. B: Condens. Matter 73, 104118 (2006).

    Article  CAS  Google Scholar 

  43. A.F. Young, J.A. Montoya, C. Sanloup, M. Lazzeri, E. Gregoryanz, and S. Scandolo: Interstitial dinitrogen makes PtN2 an insulating hard solid. Phys. Rev. B: Condens. Matter 73, 153102 (2006).

    Article  CAS  Google Scholar 

  44. C.Z. Fan, S.Y. Zeng, L.X. Li, Z.J. Zhan, R.P. Liu, W.K. Wang, P. Zhang, and Y.G. Yao: Potential superhard osmium dinitride with fluorite and pyrite structure: First-principles calculations. Phys. Rev. B: Condens. Matter 74, 125118 (2006).

    Article  CAS  Google Scholar 

  45. R. Yu, Q. Zhan, and C. De Jonghe: Crystal structures of and displacive transitions in OsN2, IrN2, RuN2, and RhN2. Angew. Chem. Int. Ed. 46, 1136 (2007).

    Article  CAS  Google Scholar 

  46. J.A. Montoya, A.D. Hernandez, C. Sanloup, E. Gregoryanz, and S. Scandolo: OsN2: Crystal structure and electronic properties. Appl. Phys. Lett. 90, 011909 (2007).

    Article  CAS  Google Scholar 

  47. Y.X. Wang, M. Arai, and T. Sasaki: Marcasite osmium nitride with high bulk modulus: First-principles calculations. Appl. Phys. Lett. 90, 061922 (2007).

    Article  CAS  Google Scholar 

  48. Z.W. Chen, X.J. Guo, Z.Y. Liu, M.Z. Mao, Q. Jing, G. Li, X.Y. Zhang, L.X. Li, Q. Wang, Y.J. Tian, and R.P. Liu: Crystal structure and physical properties of OsN2 and PtN2 in the marcasite phase. Phys. Rev. B: Condens. Matter 75, 054103 (2007).

    Article  CAS  Google Scholar 

  49. D. Aberg, B. Sadigh, J. Crowhurst, and F. Goncharov: Thermodynamic ground states of platinum metal nitrides. Phys. Rev. Lett. 100, 095501 (2008).

    Article  CAS  Google Scholar 

  50. F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian: Hardness of covalent crystals. Phys. Rev. Lett. 91, 015502 (2003).

    Article  CAS  Google Scholar 

  51. A. Simunek and J. Vackar: Hardness of covalent and ionic crystals: First-principle calculations. Phys. Rev. Lett. 96, 085501 (2006).

    Article  CAS  Google Scholar 

  52. A. Simunek: How to estimate hardness of crystals on a pocket calculator. Phys. Rev. B: Condens. Matter 75, 172108 (2007).

    Article  CAS  Google Scholar 

  53. K. Li, X. Wang, F. Zhang, and D. Xue: Electronegativity identification of novel superhard materials. Phys. Rev. Lett. 100, 235504 (2008).

    Article  CAS  Google Scholar 

  54. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne: First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).

    CAS  Google Scholar 

  55. T.H. Fischer: General methods for geometry and wavefunction optimization. J. Phys. Chem. 96, 9768 (1992).

    Article  CAS  Google Scholar 

  56. D.M. Ceperley and B.I. Alder: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  57. J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B: Condens. Matter 23, 5048 (1981).

    Article  CAS  Google Scholar 

  58. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter 41, 7892 (1990).

    Article  CAS  Google Scholar 

  59. G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B: Condens. Matter 47, 558 (1993).

    Article  CAS  Google Scholar 

  60. G. Kresse and J. Hafner: Norm-conserving ultrasoft pseudopotentials first-row and transition elements. J. Phys. Condens. Matter 6, 8245 (1994).

    Article  CAS  Google Scholar 

  61. G. Kresse and J. Hafner: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B: Condens. Matter 49, 14251 (1994).

    Article  CAS  Google Scholar 

  62. G. Kresse and J. Furthmüller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  63. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    Article  CAS  Google Scholar 

  64. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter 59, 1758 (1999).

    Article  CAS  Google Scholar 

  65. P.E. Blochl: Projector augmented-wave method. Phys. Rev. B: Condens. Matter 50, 17953 (1994).

    Article  CAS  Google Scholar 

  66. F. Gao: Hardness of oxide materials. Phys. Rev. B: Condens. Matter 69, 094113 (2004).

    Article  CAS  Google Scholar 

  67. X. Guo, J. He, Z. Liu, Y. Tian, J. Sun, and H-T. Wang: Bond ionicities and hardness of B13C2-like structured ByX crystals (X = C, N, O, P, As). Phys. Rev. B: Condens. Matter 73, 104115 (2006).

    Article  CAS  Google Scholar 

  68. J.C. Phillips: Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 42, 317 (1970).

    Article  CAS  Google Scholar 

  69. W. Jeitschko and R. Rühl: Synthesis and crystal structure of diamagnetic ReP4, a polyphosphide with Re-Re pairs. Acta Crystallogr., Sect. B 35, 1953 (1979).

    Article  Google Scholar 

  70. Online help for Materials studio CASTEP: http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html.

  71. S.J. La Placa and W.C. Hamilton: Refinement of the crystal structure of α-N2. Acta Crystallogr., Sect. B 28, 984 (1972).

    Article  Google Scholar 

  72. S.Q. Wu, Z.F. Hou, and Z.Z. Zhu: Ab initio study on the structural and elastic properties of MAlSi (M = Ca, Sr, and Ba). Solid State Commun. 143, 425 (2007).

    Article  CAS  Google Scholar 

  73. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond, Sect. A 65, 349 (1952).

    Article  Google Scholar 

  74. Y. Yang, H. Lu, C. Yu, and J.M. Chen: First-principles calculations of mechanical properties of TiC and TiN. J. Alloys Compd. 485, 542 (2009).

    Article  CAS  Google Scholar 

  75. J.P. Watt and L. Peselnick: Clarification of the Hashin‐Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries. J. Appl. Phys. 51, 1525 (1980).

    Article  CAS  Google Scholar 

  76. Y.C. Ding, A.P. Xiang, X.J. He, and X.F. Hu: Structural, elastic constants, hardness, and optical properties of pyrite-type dinitrides (CN2, SiN2, GeN2). Physica B 406, 1357 (2011).

    Article  CAS  Google Scholar 

  77. L. Guan, B. Liu, L. Jin, J. Guo, Q. Zhao, Y. Wang, and G. Fu: Electronic structure and optical properties of LaNiO3: First-principles calculations. Solid State Commun. 150, 2011–2014 (2010).

    Article  CAS  Google Scholar 

  78. K. Haddadi, A. Bouhemadou, and L. Louail: First-principles study of the structural, elastic and electronic properties of the anti-perovskites SnBSc3 and PbBSc3. J. Alloys Compd. 504, 296–302 (2010).

    Article  CAS  Google Scholar 

  79. Y. Li, Y. Gao, B. Xiao, T. Min, Z. Fan, S. Ma, and D. Yi: The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations. J. Alloys Compd. 509, 5242–5249 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported partly by the State of Planning Organization of Turkey under Grant No. 2001K120590.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Oztekin Ciftci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydin, S., Ciftci, Y.O. & Tatar, A. Superhard transition metal tetranitrides: XN4 (X = Re, Os, W). Journal of Materials Research 27, 1705–1715 (2012). https://doi.org/10.1557/jmr.2012.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.131

Navigation