Abstract
The structural, mechanical, and electronic properties of rhenium, osmium, and tungsten tetranitrides, XN4 (X = Re, Os, W) with the orthorhombic ReP4-type structure have been investigated by first-principles calculations using density functional plane-wave pseudopotential method. The calculated formation enthalpies and elastic constants show that these tetranitrides are energetically and mechanically stable. It is appeared from the calculated band structures and density of states that ReN4 and new proposed WN4 are metallic, while OsN4 is semiconductor with a band gap of 0.64 eV. The hardness values of all compounds obtained from different hardness methods indicate that these tetranitrides are superhard materials.
Similar content being viewed by others
References
V.L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D.C. Rubie: Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78, 1385 (2001).
A.G. Thornton and J. Wilks: Clean surface reactions between diamond and steel. Nature 274, 792 (1978).
J.J. Gilman, R.W. Cumberland, and R.B. Kaner: Design of hard crystals. Int. J. Refract. Met. Hard Mater. 24, 1 (2006).
J. Haines, J.M. Leger, and G. Bocqillon: Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31, 1 (2001).
R.B. Kaner, J.J. Gilman, and S.H. Tolbert: Designing superhard materials. Science 308, 1268 (2005).
F. Peng, Q. Liu, H. Fu, and X. Yang: Electronic and thermodynamic properties of ReB2 under high pressure and temperature. Solid State Commun. 149, 56 (2009).
Z. Wu, X. Hao, X. Liu, and J. Meng: Structures and elastic properties of OsN2 investigated via first-principles density functional calculations. Phys. Rev. B: Condens. Matter 75, 054115 (2007).
H. Sun, S.H. Jhi, D. Roundy, M.L. Cohen, and S.G. Louie: Structural forms of cubic BC2N. Phys. Rev. B: Condens. Matter 64, 094108 (2001).
D.M. Teter: Computational alchemy: The search for new superhard materials. MRS Bull. 23, 22 (1998).
D.M. Teter and R.J. Hemley: Low-compressibility carbon nitrides. Science 271, 53 (1996).
Q. Li, M. Wang, A.R. Oganov, T. Cui, Y.M. Ma, and G.T. Zou: Rhombohedral superhard structure of BC2N. J. Appl. Phys. 105, 053514 (2009).
J.B. Levine, S.H. Tolbert, and R.B. Kaner: Advancements in the search for superhard ultra-incompressible metal borides. Adv. Funct. Mater. 19, 3519–3533 (2009).
J.B. Levine, S.L. Nguyen, H.I. Rasool, J.A. Wright, S.E. Brown, and R.B. Kaner: Preparation and properties of metallic, superhard rhenium diboride crystals. J. Am. Chem. Soc. 130, 16953 (2008).
W.J. Zhao and Y.X. Wang: Elastic stability and electronic structure of low energy tetragonal and monoclinic PdN2 and PtN2. Chin. Phys. B 18, 3934 (2009).
Y.X. Wang, M. Arai, T. Sasaki, and C.Z. Fan: Ab initio study of monoclinic iridium nitride as a high bulk modulus compound. Phys. Rev. B: Condens. Matter 75, 104110 (2007).
Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B: Condens. Matter 76, 054115 (2007).
A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, and H.K. Mao: Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 96, 155501 (2006).
R. Yu, Q. Zhan, and X.F. Zhang: Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor. Appl. Phys. Lett. 88, 051913 (2006).
H.Y. Gou, L. Hou, J.W. Zhang, G.F. Sun, L.H. Gao, and F.M. Gao: Theoretical hardness of PtN2 with pyrite structure. Appl. Phys. Lett. 89, 141910 (2006).
R. Yu and X.F. Zhang: Family of noble metal nitrides: First principles calculations of the elastic stability. Phys. Rev. B: Condens. Matter 72, 054103 (2005).
X.F. Hao, Y.H. Xu, Z.J. Wu, D.F. Zhou, X.J. Liu, X.Q. Cao, and J. Meng: Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study. Phys. Rev. B: Condens. Matter 74, 224112 (2006).
Y.C. Liang and B. Zhang: Mechanical and electronic properties of superhard ReB2. Phys. Rev. B: Condens. Matter 76, 132101 (2007).
Y.X. Wang: Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations. Appl. Phys. Lett. 91, 101904 (2007).
R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, and R.B. Kaner: Osmium diboride, an ultra-incompressible, hard material. J. Am. Chem. Soc. 127, 7264 (2005).
H.Y. Gou, L. Hou, J.W. Zhang, and F.M. Gao: Pressure-induced incompressibility of ReC and effect of metallic bonding on its hardness. Appl. Phys. Lett. 92, 241901 (2008).
Y.X. Wang: Ultra-incompressible and hard technetium carbide and rhenium carbide: First-principles prediction. Phys. Status Solidi RRL 2, 126 (2008).
X.J. Guo, B. Xu, J.L. He, D.L. Yu, Z.Y. Liu, and Y.J. Tian: Structure and mechanical properties of osmium carbide: First-principles calculations. Appl. Phys. Lett. 93, 041904 (2008).
Q.F. Gu, G. Krauss, and W. Steurer: Transition metal borides: Superhard versus ultra-incompressible. Adv. Mater. 20, 3620 (2008).
M. Zhang, M. Wang, T. Cui, Y.M. Ma, Y.L. Niu, and G.T. Zou: Electronic structure, phase stability, and hardness of the osmium borides, carbides, nitrides, and oxides: First-principles calculations. J. Phys. Chem. Solids 69, 2096 (2008).
Z. Wen-Jie, X. Hong-Bin, and W. Yuang-Xu: Prediction of a superhard material of ReN4 with a high shear modulus. Chin. Phys. B 19 (1), 016201 (2010).
W.J. Zhao, H.B. Xu, and Y.X. Wang: A hard semiconductor OsN4 with high elastic constant c44. Phys. Status Solidi RRL 3, 272 (2009).
E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H.K. Mao, and R.J. Hemley: Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 3, 294 (2004).
J.C. Crowhurst, A.F. Goncharov, B. Sadigh, C.L. Evans, P.G. Morrall, J.L. Ferreira, and A.J. Nelson: Synthesis and characterization of the nitrides of platinum and iridium. Science 311, 1275 (2006).
A.F. Guillermet, J. Haglund, and G. Grimvall: Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure. Phys. Rev. B: Condens. Matter 48, 11673 (1993).
J.C. Crowhurst, A.F. Goncharov, B. Sadigh, J.M. Zaug, D. Aberg, Y. Meng, and V.B. Prakapenka: Synthesis and characterization of nitrides of iridium and palladium. J. Mater. Res. 23, 1 (2008).
B.R. Sahu and L. Kleinman: PtN: A zinc-blende metallic transition-metal compound. Phys. Rev. B: Condens. Matter 71, 041101 (2005).
J. Uddin and G.E. Scuseria: Structures and electronic properties of platinum nitride by density functional theory. Phys. Rev. B: Condens. Matter 72, 035101 (2005).
M.B. Kanoun and S. Goumri-Said: Electronic properties of the binary noble metal nitride PtN: First-principles calculations. Phys. Rev. B: Condens. Matter 72, 113103 (2005).
R. Yu and X.F. Zhang: Platinum nitride with fluorite structure. Appl. Phys. Lett. 86, 121913 (2005).
A.D. Hernandez, J.A. Montoya, G. Profeta, and S. Scandolo: First-principles investigation of the electron-phonon interaction in OsN2: Theoretical prediction of superconductivity mediated by N-N covalent bonds. Phys. Rev. B: Condens. Matter 77, 092504 (2008).
J.C. Zheng: Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN. Phys. Rev. B: Condens. Matter 72, 052105 (2005).
S.K.R. Patil, S.V. Khare, B.R. Tuttle, J.K. Bording, and S. Kodambaka: Mechanical stability of possible structures of PtN investigated using first-principles calculations. Phys. Rev. B: Condens. Matter 73, 104118 (2006).
A.F. Young, J.A. Montoya, C. Sanloup, M. Lazzeri, E. Gregoryanz, and S. Scandolo: Interstitial dinitrogen makes PtN2 an insulating hard solid. Phys. Rev. B: Condens. Matter 73, 153102 (2006).
C.Z. Fan, S.Y. Zeng, L.X. Li, Z.J. Zhan, R.P. Liu, W.K. Wang, P. Zhang, and Y.G. Yao: Potential superhard osmium dinitride with fluorite and pyrite structure: First-principles calculations. Phys. Rev. B: Condens. Matter 74, 125118 (2006).
R. Yu, Q. Zhan, and C. De Jonghe: Crystal structures of and displacive transitions in OsN2, IrN2, RuN2, and RhN2. Angew. Chem. Int. Ed. 46, 1136 (2007).
J.A. Montoya, A.D. Hernandez, C. Sanloup, E. Gregoryanz, and S. Scandolo: OsN2: Crystal structure and electronic properties. Appl. Phys. Lett. 90, 011909 (2007).
Y.X. Wang, M. Arai, and T. Sasaki: Marcasite osmium nitride with high bulk modulus: First-principles calculations. Appl. Phys. Lett. 90, 061922 (2007).
Z.W. Chen, X.J. Guo, Z.Y. Liu, M.Z. Mao, Q. Jing, G. Li, X.Y. Zhang, L.X. Li, Q. Wang, Y.J. Tian, and R.P. Liu: Crystal structure and physical properties of OsN2 and PtN2 in the marcasite phase. Phys. Rev. B: Condens. Matter 75, 054103 (2007).
D. Aberg, B. Sadigh, J. Crowhurst, and F. Goncharov: Thermodynamic ground states of platinum metal nitrides. Phys. Rev. Lett. 100, 095501 (2008).
F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian: Hardness of covalent crystals. Phys. Rev. Lett. 91, 015502 (2003).
A. Simunek and J. Vackar: Hardness of covalent and ionic crystals: First-principle calculations. Phys. Rev. Lett. 96, 085501 (2006).
A. Simunek: How to estimate hardness of crystals on a pocket calculator. Phys. Rev. B: Condens. Matter 75, 172108 (2007).
K. Li, X. Wang, F. Zhang, and D. Xue: Electronegativity identification of novel superhard materials. Phys. Rev. Lett. 100, 235504 (2008).
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne: First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).
T.H. Fischer: General methods for geometry and wavefunction optimization. J. Phys. Chem. 96, 9768 (1992).
D.M. Ceperley and B.I. Alder: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).
J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B: Condens. Matter 23, 5048 (1981).
D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter 41, 7892 (1990).
G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B: Condens. Matter 47, 558 (1993).
G. Kresse and J. Hafner: Norm-conserving ultrasoft pseudopotentials first-row and transition elements. J. Phys. Condens. Matter 6, 8245 (1994).
G. Kresse and J. Hafner: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B: Condens. Matter 49, 14251 (1994).
G. Kresse and J. Furthmüller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).
G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter 54, 11169 (1996).
G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter 59, 1758 (1999).
P.E. Blochl: Projector augmented-wave method. Phys. Rev. B: Condens. Matter 50, 17953 (1994).
F. Gao: Hardness of oxide materials. Phys. Rev. B: Condens. Matter 69, 094113 (2004).
X. Guo, J. He, Z. Liu, Y. Tian, J. Sun, and H-T. Wang: Bond ionicities and hardness of B13C2-like structured ByX crystals (X = C, N, O, P, As). Phys. Rev. B: Condens. Matter 73, 104115 (2006).
J.C. Phillips: Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 42, 317 (1970).
W. Jeitschko and R. Rühl: Synthesis and crystal structure of diamagnetic ReP4, a polyphosphide with Re-Re pairs. Acta Crystallogr., Sect. B 35, 1953 (1979).
Online help for Materials studio CASTEP: http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html.
S.J. La Placa and W.C. Hamilton: Refinement of the crystal structure of α-N2. Acta Crystallogr., Sect. B 28, 984 (1972).
S.Q. Wu, Z.F. Hou, and Z.Z. Zhu: Ab initio study on the structural and elastic properties of MAlSi (M = Ca, Sr, and Ba). Solid State Commun. 143, 425 (2007).
R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond, Sect. A 65, 349 (1952).
Y. Yang, H. Lu, C. Yu, and J.M. Chen: First-principles calculations of mechanical properties of TiC and TiN. J. Alloys Compd. 485, 542 (2009).
J.P. Watt and L. Peselnick: Clarification of the Hashin‐Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries. J. Appl. Phys. 51, 1525 (1980).
Y.C. Ding, A.P. Xiang, X.J. He, and X.F. Hu: Structural, elastic constants, hardness, and optical properties of pyrite-type dinitrides (CN2, SiN2, GeN2). Physica B 406, 1357 (2011).
L. Guan, B. Liu, L. Jin, J. Guo, Q. Zhao, Y. Wang, and G. Fu: Electronic structure and optical properties of LaNiO3: First-principles calculations. Solid State Commun. 150, 2011–2014 (2010).
K. Haddadi, A. Bouhemadou, and L. Louail: First-principles study of the structural, elastic and electronic properties of the anti-perovskites SnBSc3 and PbBSc3. J. Alloys Compd. 504, 296–302 (2010).
Y. Li, Y. Gao, B. Xiao, T. Min, Z. Fan, S. Ma, and D. Yi: The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations. J. Alloys Compd. 509, 5242–5249 (2011).
Acknowledgments
This work is supported partly by the State of Planning Organization of Turkey under Grant No. 2001K120590.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aydin, S., Ciftci, Y.O. & Tatar, A. Superhard transition metal tetranitrides: XN4 (X = Re, Os, W). Journal of Materials Research 27, 1705–1715 (2012). https://doi.org/10.1557/jmr.2012.131
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.131