Skip to main content

Advertisement

Log in

Defects and transport in PrxCe1−xO2−δ: Composition trends

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nonstoichiometric mixed ionic and electronic conductors (MIECs) find use as oxygen permeation membranes, cathodes in solid oxide fuel cells, oxygen storage materials in three-way catalysts, and chemoresistive gas sensors. Praseodymium–cerium oxide (PrxCe1-xO2-δ) solid solutions exhibit MIEC behavior in a relatively high and readily accessible oxygen partial pressure (PO2) regime and as such serve as model systems for investigating the correlation between thermodynamic and kinetic properties as well as exhibiting high performance figures of merit in the above applications. In this paper, we extend recently published results for Pr0.1Ce0.9O2-δ to include values of x 5 0, 0.002, 0.008, 0.1, and 0.20 (in PrxCe1-xO2-δ) to test how both defect and transport parameters depend on Pr fraction. Important observed trends with increasing x include increases in oxygen ion migration energy and MIEC and reductions in vacancy formation and Pr ionization energies. The implications these changes have for potential applications of PrxCe1-xO2-δ are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
TABLE II.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

Similar content being viewed by others

References

  1. H. Inaba and H. Tagawa: Ceria-based solid electrolytes. Solid State Ionics 83, 1–16 (1996).

    Article  CAS  Google Scholar 

  2. B.C.H. Steele: Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129, 95–110 (2000).

    Article  CAS  Google Scholar 

  3. H.L. Tuller and A.S. Nowick: Defect structure and electrical properties of nonstoichiometric CeO2 single crystals. J. Electrochem. Soc. 126, 209–217 (1979).

    Article  CAS  Google Scholar 

  4. H.L. Tuller and A.S. Nowick: Small polaron electron transport in reduced CeO2 single crystals. J. Phys. Chem. Solids 38, 859–867 (1977).

    Article  CAS  Google Scholar 

  5. S.B. Adler: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004).

    Article  CAS  Google Scholar 

  6. C. Chatzichristodoulou, P.V. Hendriksen, and A. Hagen: Defect chemistry and thermomechanical properties of Ce0.8PrxTb0.2−xO2. J. Electrochem. Soc. 157, B299–B307 (2010).

    Article  CAS  Google Scholar 

  7. S.R. Bishop, T.S. Stefanik, and H.L. Tuller: Electrical conductivity and defect equilibria of Pr0.1Ce0.9O2-δ. Phys. Chem. Chem. Phys. 13, 10165–10173 (2011).

    Article  CAS  Google Scholar 

  8. H.L. Tuller and S.R. Bishop: Point defects in oxides: Tailoring materials through defect engineering. Annu. Rev. Mater. Res. 41, 369–398 (2011).

    Article  CAS  Google Scholar 

  9. T.S. Stefanik and H.L. Tuller: Nonstoichiometry and defect chemistry in praseodymium-cerium oxide. J. Electroceram. 13, 775–778 (2004).

    Article  Google Scholar 

  10. D. Chen, S.R. Bishop, and H.L. Tuller: Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics. J. Electroceram. 28, 62–69 (2012) DOI: 10.1007/s10832-011-9678-z.

    Article  CAS  Google Scholar 

  11. S.R. Bishop, J.J. Kim, N. Thompson, D. Chen, Y. Kuru, T. Stefanik, and H.L. Tuller: Mechanical, electrical, and optical properties of (Pr, Ce)O2 solid solutions: Kinetic studies. ECS Trans. 35, 1137–1144 (2011).

    Article  CAS  Google Scholar 

  12. D. Marrocchelli, S.R. Bishop, H.L. Tuller, and B. Yildiz: Understanding chemical expansion in non-stoichiometric oxides: Ceria and zirconia case studies. Adv. Funct. Mater. DOI: 10.1002/adfm.201102648.

  13. S.R. Bishop, H.L. Tuller, Y. Kuru, and B. Yildiz: Chemical expansion of nonstoichiometric Pr0.1Ce0.9O2-δ: Correlation with defect equilibrium model. J. Eur. Ceram. Soc. 31, 2351–2356 (2011).

    Article  CAS  Google Scholar 

  14. Y. Kuru, S.R. Bishop, J.J. Kim, B. Yildiz, and H.L. Tuller: Chemomechanical properties and microstructural stability of nanocrystalline Pr-doped ceria: An in situ x-ray diffraction investigation. Solid State Ionics 193, 1–4 (2011).

    Article  CAS  Google Scholar 

  15. T.S. Stefanik: Electrical properties and defect structures of praseodymium-cerium oxide solid solutions. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2004.

    Google Scholar 

  16. J. Van Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya: Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte. Solid State Ionics 86–88, 1255–1258 (1996).

    Google Scholar 

  17. C. Chatzichristodoulou and P.V. Hendriksen: Oxygen nonstoichiometry and defect chemistry modeling of Ce0.8Pr0.2O2-d. J. Electrochem. Soc. 157, B481–B489 (2010).

    Article  CAS  Google Scholar 

  18. S.R. Bishop, K.L. Duncan, and E.D. Wachsman: Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Mater. 57, 3596–3605 (2009).

    Article  CAS  Google Scholar 

  19. J. Faber, C. Geoffroy, A. Roux, A. Sylvestre, and P. Abelard: A systematic investigation of the dc electrical conductivity of rare earth doped ceria. Appl. Phys. A 49, 225–232 (1989).

    Article  Google Scholar 

  20. W. Lai and S.M. Haile: Impedance spectroscopy as a tool for chemical and electrochemical mixed conductors: A case study of ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).

    Article  CAS  Google Scholar 

  21. R. Gerhardt-Anderson and A.S. Nowick: Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ionics 5, 547–550 (1981).

    Article  CAS  Google Scholar 

  22. V. Butler, C.R.A. Catlow, B.E.F. Fender, and J.H. Harding: Dopant ion radius and ionic conductivity in cerium dioxide. Solid State Ionics 8, 109–113 (1983).

    Article  CAS  Google Scholar 

  23. D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, and B. Johansson: Optimization of ionic conductivity in doped Ceria. Proc. Natl. Acad. Sci. U.S.A. 103, 3518–3521 (2006).

    Article  CAS  Google Scholar 

  24. J.A. Kilner and C.D. Waters: The effects of dopant cation oxygen vacancy complexes on the anion transport properties of nonstoichiometric fluorite oxides. Solid State Ionics 6, 253–259 (1982).

    Article  CAS  Google Scholar 

  25. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976).

    Article  Google Scholar 

  26. M.A. Panhans and R.N. Blumenthal: A thermodynamic and electrical conductivity study of nonstoichiometric cerium oxide. Solid State Ionics 60, 279–298 (1993).

    Article  CAS  Google Scholar 

  27. Y-P. Xiong, H. Kishimoto, K. Yamaji, M. Yoshinaga, T. Horita, M.E. Brito, and H. Yokokawa: Electronic conductivity of pure ceria. Solid State Ionics 192, 476–479 (2011).

    Article  CAS  Google Scholar 

  28. H. Yahiro, Y. Eguchi, K. Eguchi, and H. Arai, Oxygen Ion Conductivity of the Ceria Samarium Oxide System with Fluorite Structure, J. Appl. Electrochem. 18, 527–531 (1988).

    Article  CAS  Google Scholar 

  29. T. Kudo and H. Obayashi, Mixed electrical conduction in the fluorite-type Ce1-xGdxO2-x/2, J. Electrochem. Soc. 123, 415–419 (1975).

    Article  Google Scholar 

  30. H. Yahiro, T. Ohuchi, K. Eguchi, and H. Arai, Electrical properties and microstructure in the system ceria alkaline-earth oxide, J. Mater. Sci. 23, 1036–1041 (1988).

    Article  CAS  Google Scholar 

  31. K. L. Duncan, Y. Wang, S. R. Bishop, F. Ebrahimi, and E. D. Wachsman: Role of point defects in the physical properties of fluorite oxides. J. Am. Ceram. Soc. 89, 3162–3166 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was funded by the Division of Materials Research, National Science Foundation under the Material World Network (DMR-0908627) in collaboration with Prof. Ralf Moos, Universität Bayreuth. S.R.B. recognizes partial support from I2CNER, supported by the World Premier International Research Center Initiative, MEXT, Japan. H.L.T. thanks I2CNER for hosting his visit during the time this manuscript was prepared. The authors wish to thank the reviewer for identifying potential intrinsic electronic conduction for undoped ceria in high pO2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean R. Bishop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, S.R., Stefanik, T.S. & Tuller, H.L. Defects and transport in PrxCe1−xO2−δ: Composition trends. Journal of Materials Research 27, 2009–2016 (2012). https://doi.org/10.1557/jmr.2012.130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.130

Navigation