Skip to main content

Advertisement

Log in

Ultraviolet sensors using a luminescent europium (III) complex on acrylonitrile butadiene styrene polymer

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this article, the sol-gel methodology was used for coating an acrylonitrile butadiene styrene (ABS) polymer prepared by the rapid prototyping technology with a colloid containing the europium III dipicolinic complex, which presents high emission when excited in the ultraviolet region. Either acid or base was used for treatment of the ABS polymer, with a view to activating its surface. The thermal analysis evidenced a residual mass after 600 °C, which indicated that the coating adhered to the substrate. X-ray diffraction analysis showed that the structure of the ABS polymer was not affected by the sol-gel treatment. The large band centered at 287 nm, ascribed to ligand-metal charge transfer, can be used to excite the europium III dipicolinic complex in the ultraviolet C and ultraviolet B regions. The emission appears in the characteristic red region of the electromagnetic spectrum. These results indicate that the obtained material is a candidate for use as ultraviolet sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I.
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. Katelnikovas, J. Barkauskas, F. Ivanauskas, A. Beganskiene, and A. Kareiva: Aqueous sol-gel synthesis route for the preparation of YAG: Evaluation of sol-gel process by mathematical regression model. J. Sol-Gel Sci. Technol. 41, 193 (2007).

    Article  CAS  Google Scholar 

  2. Q. Wei and D. Chen, Luminescence properties of Eu3+ and Sm3+ coactivated Gd(III) tungstate phosphor for light-emitting diodes. Opt. Laser Technol. 41, 783 (2009).

    Article  Google Scholar 

  3. H.H.S Oliveira, M.A. Cebim, A.A. da Silva, and M.R. Davolos: Structural and optical properties of GdAlO3:RE3+ (RE = Eu or Tb) prepared by the Pechini method for application as X-ray phosphors. J. Alloys Compd. 488(2), 619 (2009).

    Article  CAS  Google Scholar 

  4. M.G. Matos, P.S. Calefi, K.J. Ciuffi, and E.J. Nassar: Synthesis and luminescent properties of gadolinium aluminates phosphors. Inorg. Chim. Acta 375(1), 63 (2011).

    Article  CAS  Google Scholar 

  5. M.G. Matos, P.F.S Pereira, P.S. Calefi, K.J. Ciuffi, and E.J. Nassar: Preparation of a GdCaAl3O7 matrix by the nonhydrolytic sol–gel route. J. Lumin. 129, 1120 (2009).

    Article  CAS  Google Scholar 

  6. J. Thirumalai, R. Chandramohan, and T.A. Vijayan: A novel 3D nanoarchitecture of PrVO4 phosphor: Selective synthesis, characterization, and luminescence behavior. Mater. Chem. Phys. 127, 259 (2011).

    Article  CAS  Google Scholar 

  7. M. Zevin and R. Reisfeld: Preparation and properties of active wave guides based on zirconia glasses. Opt. Mater. 8(1–2), 37 (1997).

    Article  CAS  Google Scholar 

  8. P.F.S Pereira, J.M.A Caiut, S.J.L Ribeiro, Y. Messadde, K.J. Ciuffi, L.A. Rocha, E.F. Molina, E.J. Nassar: Microwave synthesis of YAG: Eu by sol-gel methodology. J. Lumin. 126(2), 378 (2007).

    Article  CAS  Google Scholar 

  9. E.J. Nassar, P.F.S Pereira, E.C.O Nassor, L.R. Ávila, K.J. Ciuffi, and P.S. Calefi: Nonhydrolytic sol-gel synthesis and characterization of YAG. J. Mater. Sci. 42(7), 2244 (2007).

    Article  CAS  Google Scholar 

  10. K. Binnemans: Lanthanide-based luminescent hybrid materials. Chem. Rev. 109(9), 4283 (2009).

    Article  CAS  Google Scholar 

  11. P.F.S Pereira, M.G. Matos, L.R. Ávila, E.C.O Nassor, A. Cestari, K.J. Ciuffi, P.S. Calefi, E.J. Nassar: Red, Green and Blue (RGD) emission doped Y3Al5O12 (YAG) phosphors prepared bynonhydrolytic sol-gel route”. J. Lumin. 130(3), 488 (2010).

    Article  CAS  Google Scholar 

  12. C. Reinhard and H.U. Gudel: High-resolution optical spectroscopy of Na3[Ln(dpa)3]·13H2O with Ln ) Er3+, Tm3+, Yb3+. Inorg. Chem. 41, 1048 (2002).

    Article  CAS  Google Scholar 

  13. K. Binnemans, K. Van Herck, and C. GiSrller-Walrand: Influence of dipicolinate ligands on the spectroscopic properties of europium (III) in solution. Chem. Phys. Lett. 266, 297 (1997).

    Article  CAS  Google Scholar 

  14. J.G. Kim, S.K. Yoon, Y. Sohn, and J.G. Kang: Luminescence and crystal field parameters of the Na3[Eu(DPA)3].12H2O complex in a single crystalline state. J. Alloys Compd. 274, 1 (1998).

    Article  CAS  Google Scholar 

  15. K. Binnemas and C. Görller-Walrand: Application of the Eu3+ ion for site symmetry determination. J. Rare Earths 14(3), 173 (1996).

    Google Scholar 

  16. A. D’Aléo, L. Toupet, S. Rigaut, C. Andraud, and O. Maury: Guanidinium as powerful cation for the design of lanthanate tris-dipicolinate crystalline materials: Synthesis, structure and photophysical properties. Opt. Mater. 30, 1682 (2008).

    Article  Google Scholar 

  17. S. Lis and G.R. Choppin: Luminescence study of europium (III) complexes with dicarboxylic acids in aqueous solution. J. Alloys Compd. 225, 257 (1995).

    Article  CAS  Google Scholar 

  18. J. Hamacek, S. Zebret, and G. Bernardinelli: Supramolecular structure of the polymeric Eu (III) complex with pyridine-2,6-dicarboxylic acid. Polyhedron 28, 2179 (2009).

    Article  CAS  Google Scholar 

  19. C.K. Chua, K.F. Leong, and C.S. Lim: Rapid Prototyping: Principles and Applications, 2nd ed. (World Scientific, Singapore, 2010) p. 448.

    Book  Google Scholar 

  20. J.P. Kruth, M.C. Leu, and T. Nakagawa: Progress in additive manufacturing and rapid prototyping. CIRP Ann. 47(2), 525 (1998).

    Article  Google Scholar 

  21. C. Bellehumeur, L. Li, Q. Sun, and P. Gu: Modeling of bond formation between polymer filaments in the fused deposition modeling process. J. Manuf. Processes 6(2), 170 (2004).

    Article  Google Scholar 

  22. G. Li, S. Lu, J. Pang, Y. Bai, L. Zhang, and X. Guo: Preparation, microstructure and properties of ABS resin with bimodal distribution of rubber particles. Mater. Lett. 66, 219 (2012).

    Article  CAS  Google Scholar 

  23. L.C. Bandeira, B.M. De Campos, E.H. De Faria, K.J. Ciuffi, P.S. Calefi, E.J. Nassar, J.V.L Silva, M. Oliveira, and I.A. Maia: TG/DTG/DTA/DSC as a tool for studying deposition by the sol-gel process on materials obtained by rapid prototyping. J. Therm. Anal. Calorim. 97(1), 67 (2009).

    Article  CAS  Google Scholar 

  24. B.M. De Campos, L.C. Bandeira, P.S. Calefi, K.J. Ciuffi, E.J. Nassar, J.V.L Silva, M. Oliveira, and I.A. Maia: Protective coating materials on Nylon substrate by sol-Gel. Virtual Phys. Prototyping 6(1), 33 (2011).

    Article  Google Scholar 

  25. L.C. Bandeira, B.M. de Campos, P.S. Calefi, K.J. Ciuffi, E.J. Nassar, J.V.L Silva, M. Oliveira, and I.A. Maia: Coating on organic polymer with macroporous structure prepared by rapid prototyping. J. Nanostruct. Polym. Nanocomposites 7/2, 47 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo J. Nassar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, É.A., Azevedo, C.B., Rocha, L.A. et al. Ultraviolet sensors using a luminescent europium (III) complex on acrylonitrile butadiene styrene polymer. Journal of Materials Research 27, 2088–2095 (2012). https://doi.org/10.1557/jmr.2012.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.129

Navigation