Skip to main content

Advertisement

Log in

Phase transformations in nanocomposite ZrAlN thin films during annealing

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocomposite Zr0.52Al0.48N1.11 thin films consisting of crystalline grains surrounded by an amorphous matrix were deposited using cathodic arc evaporation. The structure evolution after annealing of the films was studied using high-energy x-ray scattering and transmission electron microscopy. The mechanical properties were characterized by nanoindentation on as-deposited and annealed films. After annealing in temperatures of 1050–1400 °C, nucleation and grain growth of cubic ZrN takes place in the film. This increases the hardness, which reaches a maximum, while parts of the film remain amorphous. Grain growth of the hexagonal AlN phase occurs above 1300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. S. Veprek and S. Reiprich: A concept for the design of novel superhard coatings. Thin Solid Films 268 (1–2), 64 (1995).

    Article  CAS  Google Scholar 

  2. S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.D. Männling, P. Nesladek, G. Dollinger, and A. Bergmaier: Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa. Surf. Coat. Technol. 133–, 152 (2000).

    Article  Google Scholar 

  3. D. Ma, S. Ma, and K. Xu: Superhard nanocomposite Ti-Si-C-N coatings prepared by pulsed-d.c. plasma enhanced CVD. Surf. Coat. Technol. 200, 382 (2005).

    Article  CAS  Google Scholar 

  4. Y. Guo, S. Ma, and K. Xu: Effects on carbon content and annealing temperature on the microstructure and hardness of super hard Ti-Si-C-N nanocomposite coatings prepared by pulsed d.c. PCVD. Surf. Coat. Technol. 201, 5240 (2007).

    Article  CAS  Google Scholar 

  5. A. Winkelmann, J.M. Cairney, M.J. Hoffman, P.J. Martin, and A. Bendavid: Zr-Si-N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties. Surf. Coat. Technol. 200 (14–15), 4213 (2006).

    Article  CAS  Google Scholar 

  6. C. Mitterer, P. Losbichler, F. Hofer, P. Warbichler, P.N. Gibson, and W. Gissler: Nanocrystalline hard coatings within the quasi-binary system TiN-TiB2. Vacuum 50 (3–4), 313 (1998).

    Article  CAS  Google Scholar 

  7. P. Karvankova, M.G.J. Veprek-Heijman, O. Zindulka, A. Bergmaier, and S. Veprek: Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: A comparative study of their properties. Surf. Coat. Technol. 163–(0), 149 (2003).

    Article  Google Scholar 

  8. H.-D. Männling, D.S. Patil, K. Moto, M. Jilek, and S. Veprek: Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides. Surf. Coat. Technol. 146–, 263 (2001).

    Article  Google Scholar 

  9. J.S. Koehler: Attempt to design a strong solid. Phys. Rev. B 2 (2), 547 (1970).

    Article  Google Scholar 

  10. U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, and J.E. Greene: Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys. 62 (2), 481 (1987).

    Article  CAS  Google Scholar 

  11. H. Söderberg, M. Odén, J.M. Molina-Aldareguia, and L. Hultman: Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering. J. Appl. Phys. 97 (11), 114327 (2005).

    Article  CAS  Google Scholar 

  12. P.H. Mayrhofer, A. Hörling, L. Karlsson, C. Mitterer, and L. Hultman: Self-organized nanostructures in the Ti-Al-N system. Appl. Phys. Lett. 83 (10), 2049 (2003).

    Article  CAS  Google Scholar 

  13. A. Hörling, L. Hultman, M. Odén, J. Sjölén, and L. Karlsson: Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools. Surf. Coat. Technol. 191 (2–3), 384 (2005).

    Article  CAS  Google Scholar 

  14. A. Knutsson, M.P. Johansson, P.O.Å. Persson, L. Hultman, and M. Odén: Thermal decomposition products in arc evaporated TiAlN/TiN multilayers. Appl. Phys. Lett. 93, 143110 (2008).

    Article  CAS  Google Scholar 

  15. F. Tasnádi, I.A. Abrikosov, L. Rogström, J. Almer, M.P. Johansson, and M. Odén: Significant elastic anisotropy in Ti1-xAlxN alloys. Appl. Phys. Lett. 97, 231902 (2010).

    Article  CAS  Google Scholar 

  16. A. Flink, J.M. Andersson, B. Alling, R. Daniel, J. Sjölén, L. Karlsson, and L. Hultman: Structure and thermal stability of arc evaporated (Ti0.33Al0.67)1-xSixN thin films. Thin Solid Films 517 (2), 714 (2008).

    Article  CAS  Google Scholar 

  17. L.J.S. Johnson, L. Rogström, M.P. Johansson, M. Odén, and L. Hultman: Microstructure evolution and age hardening in (Ti, Si)(C, N) thin films deposited by cathodic arc evaporation. Thin Solid Films 519, 1397 (2010).

    Article  CAS  Google Scholar 

  18. P.H. Mayrhofer, M. Stoiber, and C. Mitterer: Age hardening of PACVD TiBN thin films. Scr. Mater. 53 (2), 241 (2005).

    Article  CAS  Google Scholar 

  19. H. Lind, R. Forsén, B. Alling, N. Ghafoor, F. Tasnádi, M.P. Johansson, I.A. Abrikosov, and M. Odén: Improving thermal stability of hard coating films via a concept of multicomponent alloying. Appl. Phys. Lett. 99, 091903 (2011).

    Article  CAS  Google Scholar 

  20. H. Hasegawa, M. Kawate, and T. Suzuki: Effects of Al contents on microstructures of Cr1-xAlxN and Zr1-xAlxN films synthesized by cathodic arc method. Surf. Coat. Technol. 200, 2409 (2005).

    Article  CAS  Google Scholar 

  21. R. Lamni, R. Sanjinés, M. Parlinska-Wojtan, A. Karimi, and F. Lévy: Microstructure and nanohardness properties of Zr-Al-N and Zr-Cr-N thin films. J. Vac. Sci. Technol., A 23 (4), 593 (2005).

    Article  CAS  Google Scholar 

  22. L. Rogström, L.J.S. Johnson, M.P. Johansson, M. Ahlgren, L. Hultman, and M. Odén: Age hardening in arc-evaporated ZrAlN thin films. Scr. Mater. 62, 739 (2010).

    Article  CAS  Google Scholar 

  23. L. Rogström, L.J.S. Johnson, M.P. Johansson, M. Ahlgren, L. Hultman, and M. Odén: Thermal stability and mechanical properties of arc evaporated ZrN/ZrAlN multilayers. Thin Solid Films 519, 694 (2010).

    Article  CAS  Google Scholar 

  24. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (6), 1564 (1992).

    Article  CAS  Google Scholar 

  25. J. Almer, U. Lienert, R.L. Peng, C. Schlauer, and M. Odén: Strain and texture analysis of coatings using high-energy x-rays. J. Appl. Phys. 94 (1), 697 (2003).

    Article  CAS  Google Scholar 

  26. M.G. Brik and C.G. Ma: First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Cs, Ti, V, Cr, Zr, Nb). Comp. Mat. Sci. 51, 380 (2012).

    Article  CAS  Google Scholar 

  27. P.R. Jemian, J.R. Weertman, G.G. Long, and R.D. Spal: Characterization of 9Cr-1MoVNb steel by anomalous small-angle x-ray scattering. Acta Metall. Mater. 39 (11), 2477 (1991).

    Article  CAS  Google Scholar 

  28. J. Ilavsky and P.R. Jemian: Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42 (2), 347 (2009).

    Article  CAS  Google Scholar 

  29. Al3Zr, PDF No. 48-1385, JCPDS - International Centre for Diffraction Data. (1998).

  30. Al3Zr4, PDF No. 48-1381, JCPDS - International Centre for Diffraction Data. (1998).

  31. I. Petrov, P.B. Barna, L. Hultman, and J.E. Greene: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21 (5), S117 (2003).

    Article  CAS  Google Scholar 

  32. M. Diserens, J. Patscheider, and F. Lévy: Improving the properties of titanium nitride by incorporation of silicon. Surf. Coat. Technol. 108–(1–3), 241 (1998).

    Article  Google Scholar 

  33. J. Patscheider, T. Zehnder, and M. Diserens: Structure-performance relations in nanocomposite coatings. Surf. Coat. Technol. 146–, 201 (2001).

    Article  Google Scholar 

  34. C.S. Sandu, F. Medjani, R. Sanjinés, A. Karimi, and F. Lévy: Structure, morphology and electrical properties of sputtered Zr-Si-N thin films: From solid solution to nanocomposite. Surf. Coat. Technol. 201 (7), 4219 (2006).

    Article  CAS  Google Scholar 

  35. A. Anders: Cathodic Arcs, From Fractal Spots to Energetic Condensation (Springer Series, New York, NY, 2008).

    Book  Google Scholar 

  36. D.S. Yee, J.J. Cuomo, M.A. Frisch, and D.P.E. Smith: Reactive radio frequency sputter deposition of higher nitrides of titanium, zirconium, and hafnium. J. Vac. Sci. Technol., A 4 (3), 381 (1986).

    Article  CAS  Google Scholar 

  37. A.J. Perry: On the existence of point defects in physical vapor deposited films of TiN, ZrN, and HfN. J. Vac. Sci. Technol., A 6 (3), 2140 (1988).

    Article  CAS  Google Scholar 

  38. J.P. Dauchot, S. Edart, M. Wautelet, and M. Hecq: Synthesis of zirconium nitride films monitored by in situ soft x-ray spectrometry. Vacuum 46 (8–10), 927 (1995).

    Article  CAS  Google Scholar 

  39. L. Pichon, T. Girardeau, A. Straboni, F. Lignou, P. Guérin, and J. Perrière: Zirconium nitrides deposited by dual ion beam sputtering: Physical properties and growth modelling. Appl. Surf. Sci. 150 (1–4), 115 (1999).

    Article  CAS  Google Scholar 

  40. H.M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, and J.-C. Parlebas: Investigations on non-stoichiometric zirconium nitrides. Appl. Surf. Sci. 200, 231 (2002).

    Article  CAS  Google Scholar 

  41. H. Spillmann, P.R. Willmott, M. Morstein, and P.J. Uggowitzer: ZrN, ZrxAlyN and ZrxGayN thin films - novel materials for hard coatings grown using pulsed laser deposition. Appl. Phys. A 73, 441 (2001).

    Article  CAS  Google Scholar 

  42. J.-L. Ruan, J.-L. Huang, J.S. Chen, and D.-F. Lii: Effects of substrate bias on the reactive sputtered Zr-Al-N diffusion barrier films. Surf. Coat. Technol. 200, 1652 (2005).

    Article  CAS  Google Scholar 

  43. L.E. Toth: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).

    Google Scholar 

  44. B. Uhrenius: Evaluation of molar volumes in the Co-W-C system and calculation of volume fractions of phases in cemented carbides. Int. J. Refract. Met. Hard Mater. 12, 121 (1994).

    Article  Google Scholar 

  45. K.A. Gruss, T. Zheleva, R.F. Davis, and T.R. Watkins: Characterization of zirconium nitride coatings deposited by cathodic arc sputtering. Surf. Coat. Technol. 107, 115 (1998).

    Article  CAS  Google Scholar 

  46. E.W. Niu, L. Li, G.H. Lv, H. Chen, W.R. Feng, S.H. Fan, S.Z. Yang, and X.Z. Yang: Influence of substrate bias on the structure and properties of ZrN films deposited by cathodic vacuum arc. Mater. Sci. Eng., A 460–, 135 (2007).

    Article  CAS  Google Scholar 

  47. P.H. Mayrhofer, G. Tischler, and C. Mitterer: Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering. Surf. Coat. Technol. 142–, 78 (2001).

    Article  Google Scholar 

  48. H.-M. Tung, J.-H. Huang, D.-G. Tsai, C.-F. Ai, and G.-P. Yu: Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment. Mater. Sci. Eng., A 500 (1–2), 104 (2009).

    Article  CAS  Google Scholar 

  49. R.W. Siegel and G.E. Fougere: Mechanical properties of nanophase metals. Nanostruct. Mater. 6 (1–4), 205 (1995).

    Article  CAS  Google Scholar 

  50. J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391 (6667), 561 (1998).

    Article  Google Scholar 

  51. M. Rester, J. Neidhardt, P. Eklund, J. Emmerlich, H. Ljungcrantz, L. Hultman, and C. Mitterer: Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance. Mater. Sci. Eng., A 429 (1–2), 90 (2006).

    Article  CAS  Google Scholar 

  52. H.S. Kim and M.B. Bush: The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11 (3), 361 (1999).

    Article  CAS  Google Scholar 

  53. E. Török, A.J. Perry, L. Chollet, and W.D. Sproul: Young’s modulus of TiN, TiC, ZrN and HfN. Thin Solid Films 153 (1–3), 37 (1987).

    Article  Google Scholar 

  54. A.J. Perry: A contribution to the study of Poisson’s ratios and elastic constants of TiN, ZrN and HfN. Thin Solid Films 193 /, 463 (1990).

    Article  Google Scholar 

  55. D. Gerlich, S.L. Dole, and G.A. Slack: Elastic properties of aluminium nitride. J. Phys. Chem. Solids 47 (5), 437 (1986).

    Article  CAS  Google Scholar 

  56. V. Mortet, M. Nesladek, K. Haenen, A. Morel, M. D’Olieslaeger, and M. Vanecek: Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering. Diamond Relat. Mater. 13 (4–8), 1120 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Swedish Research Council (VR) Project and Linnaeus Grants as well as the VINNEX center of Excellence on Functional Nanoscale Materials (FunMat) are acknowledged for the financial support. Dr. Naureen Ghafoor, Linköping University, assisted with TEM work with instruments provided by the KAW Foundation. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Rogström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogström, L., Ahlgren, M., Almer, J. et al. Phase transformations in nanocomposite ZrAlN thin films during annealing. Journal of Materials Research 27, 1716–1724 (2012). https://doi.org/10.1557/jmr.2012.122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.122

Navigation