Abstract
Nanocomposite Zr0.52Al0.48N1.11 thin films consisting of crystalline grains surrounded by an amorphous matrix were deposited using cathodic arc evaporation. The structure evolution after annealing of the films was studied using high-energy x-ray scattering and transmission electron microscopy. The mechanical properties were characterized by nanoindentation on as-deposited and annealed films. After annealing in temperatures of 1050–1400 °C, nucleation and grain growth of cubic ZrN takes place in the film. This increases the hardness, which reaches a maximum, while parts of the film remain amorphous. Grain growth of the hexagonal AlN phase occurs above 1300 °C.
Similar content being viewed by others
References
S. Veprek and S. Reiprich: A concept for the design of novel superhard coatings. Thin Solid Films 268 (1–2), 64 (1995).
S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.D. Männling, P. Nesladek, G. Dollinger, and A. Bergmaier: Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa. Surf. Coat. Technol. 133–, 152 (2000).
D. Ma, S. Ma, and K. Xu: Superhard nanocomposite Ti-Si-C-N coatings prepared by pulsed-d.c. plasma enhanced CVD. Surf. Coat. Technol. 200, 382 (2005).
Y. Guo, S. Ma, and K. Xu: Effects on carbon content and annealing temperature on the microstructure and hardness of super hard Ti-Si-C-N nanocomposite coatings prepared by pulsed d.c. PCVD. Surf. Coat. Technol. 201, 5240 (2007).
A. Winkelmann, J.M. Cairney, M.J. Hoffman, P.J. Martin, and A. Bendavid: Zr-Si-N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties. Surf. Coat. Technol. 200 (14–15), 4213 (2006).
C. Mitterer, P. Losbichler, F. Hofer, P. Warbichler, P.N. Gibson, and W. Gissler: Nanocrystalline hard coatings within the quasi-binary system TiN-TiB2. Vacuum 50 (3–4), 313 (1998).
P. Karvankova, M.G.J. Veprek-Heijman, O. Zindulka, A. Bergmaier, and S. Veprek: Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: A comparative study of their properties. Surf. Coat. Technol. 163–(0), 149 (2003).
H.-D. Männling, D.S. Patil, K. Moto, M. Jilek, and S. Veprek: Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides. Surf. Coat. Technol. 146–, 263 (2001).
J.S. Koehler: Attempt to design a strong solid. Phys. Rev. B 2 (2), 547 (1970).
U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, and J.E. Greene: Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys. 62 (2), 481 (1987).
H. Söderberg, M. Odén, J.M. Molina-Aldareguia, and L. Hultman: Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering. J. Appl. Phys. 97 (11), 114327 (2005).
P.H. Mayrhofer, A. Hörling, L. Karlsson, C. Mitterer, and L. Hultman: Self-organized nanostructures in the Ti-Al-N system. Appl. Phys. Lett. 83 (10), 2049 (2003).
A. Hörling, L. Hultman, M. Odén, J. Sjölén, and L. Karlsson: Mechanical properties and machining performance of Ti1-xAlxN-coated cutting tools. Surf. Coat. Technol. 191 (2–3), 384 (2005).
A. Knutsson, M.P. Johansson, P.O.Å. Persson, L. Hultman, and M. Odén: Thermal decomposition products in arc evaporated TiAlN/TiN multilayers. Appl. Phys. Lett. 93, 143110 (2008).
F. Tasnádi, I.A. Abrikosov, L. Rogström, J. Almer, M.P. Johansson, and M. Odén: Significant elastic anisotropy in Ti1-xAlxN alloys. Appl. Phys. Lett. 97, 231902 (2010).
A. Flink, J.M. Andersson, B. Alling, R. Daniel, J. Sjölén, L. Karlsson, and L. Hultman: Structure and thermal stability of arc evaporated (Ti0.33Al0.67)1-xSixN thin films. Thin Solid Films 517 (2), 714 (2008).
L.J.S. Johnson, L. Rogström, M.P. Johansson, M. Odén, and L. Hultman: Microstructure evolution and age hardening in (Ti, Si)(C, N) thin films deposited by cathodic arc evaporation. Thin Solid Films 519, 1397 (2010).
P.H. Mayrhofer, M. Stoiber, and C. Mitterer: Age hardening of PACVD TiBN thin films. Scr. Mater. 53 (2), 241 (2005).
H. Lind, R. Forsén, B. Alling, N. Ghafoor, F. Tasnádi, M.P. Johansson, I.A. Abrikosov, and M. Odén: Improving thermal stability of hard coating films via a concept of multicomponent alloying. Appl. Phys. Lett. 99, 091903 (2011).
H. Hasegawa, M. Kawate, and T. Suzuki: Effects of Al contents on microstructures of Cr1-xAlxN and Zr1-xAlxN films synthesized by cathodic arc method. Surf. Coat. Technol. 200, 2409 (2005).
R. Lamni, R. Sanjinés, M. Parlinska-Wojtan, A. Karimi, and F. Lévy: Microstructure and nanohardness properties of Zr-Al-N and Zr-Cr-N thin films. J. Vac. Sci. Technol., A 23 (4), 593 (2005).
L. Rogström, L.J.S. Johnson, M.P. Johansson, M. Ahlgren, L. Hultman, and M. Odén: Age hardening in arc-evaporated ZrAlN thin films. Scr. Mater. 62, 739 (2010).
L. Rogström, L.J.S. Johnson, M.P. Johansson, M. Ahlgren, L. Hultman, and M. Odén: Thermal stability and mechanical properties of arc evaporated ZrN/ZrAlN multilayers. Thin Solid Films 519, 694 (2010).
W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (6), 1564 (1992).
J. Almer, U. Lienert, R.L. Peng, C. Schlauer, and M. Odén: Strain and texture analysis of coatings using high-energy x-rays. J. Appl. Phys. 94 (1), 697 (2003).
M.G. Brik and C.G. Ma: First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Cs, Ti, V, Cr, Zr, Nb). Comp. Mat. Sci. 51, 380 (2012).
P.R. Jemian, J.R. Weertman, G.G. Long, and R.D. Spal: Characterization of 9Cr-1MoVNb steel by anomalous small-angle x-ray scattering. Acta Metall. Mater. 39 (11), 2477 (1991).
J. Ilavsky and P.R. Jemian: Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42 (2), 347 (2009).
Al3Zr, PDF No. 48-1385, JCPDS - International Centre for Diffraction Data. (1998).
Al3Zr4, PDF No. 48-1381, JCPDS - International Centre for Diffraction Data. (1998).
I. Petrov, P.B. Barna, L. Hultman, and J.E. Greene: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21 (5), S117 (2003).
M. Diserens, J. Patscheider, and F. Lévy: Improving the properties of titanium nitride by incorporation of silicon. Surf. Coat. Technol. 108–(1–3), 241 (1998).
J. Patscheider, T. Zehnder, and M. Diserens: Structure-performance relations in nanocomposite coatings. Surf. Coat. Technol. 146–, 201 (2001).
C.S. Sandu, F. Medjani, R. Sanjinés, A. Karimi, and F. Lévy: Structure, morphology and electrical properties of sputtered Zr-Si-N thin films: From solid solution to nanocomposite. Surf. Coat. Technol. 201 (7), 4219 (2006).
A. Anders: Cathodic Arcs, From Fractal Spots to Energetic Condensation (Springer Series, New York, NY, 2008).
D.S. Yee, J.J. Cuomo, M.A. Frisch, and D.P.E. Smith: Reactive radio frequency sputter deposition of higher nitrides of titanium, zirconium, and hafnium. J. Vac. Sci. Technol., A 4 (3), 381 (1986).
A.J. Perry: On the existence of point defects in physical vapor deposited films of TiN, ZrN, and HfN. J. Vac. Sci. Technol., A 6 (3), 2140 (1988).
J.P. Dauchot, S. Edart, M. Wautelet, and M. Hecq: Synthesis of zirconium nitride films monitored by in situ soft x-ray spectrometry. Vacuum 46 (8–10), 927 (1995).
L. Pichon, T. Girardeau, A. Straboni, F. Lignou, P. Guérin, and J. Perrière: Zirconium nitrides deposited by dual ion beam sputtering: Physical properties and growth modelling. Appl. Surf. Sci. 150 (1–4), 115 (1999).
H.M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, and J.-C. Parlebas: Investigations on non-stoichiometric zirconium nitrides. Appl. Surf. Sci. 200, 231 (2002).
H. Spillmann, P.R. Willmott, M. Morstein, and P.J. Uggowitzer: ZrN, ZrxAlyN and ZrxGayN thin films - novel materials for hard coatings grown using pulsed laser deposition. Appl. Phys. A 73, 441 (2001).
J.-L. Ruan, J.-L. Huang, J.S. Chen, and D.-F. Lii: Effects of substrate bias on the reactive sputtered Zr-Al-N diffusion barrier films. Surf. Coat. Technol. 200, 1652 (2005).
L.E. Toth: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).
B. Uhrenius: Evaluation of molar volumes in the Co-W-C system and calculation of volume fractions of phases in cemented carbides. Int. J. Refract. Met. Hard Mater. 12, 121 (1994).
K.A. Gruss, T. Zheleva, R.F. Davis, and T.R. Watkins: Characterization of zirconium nitride coatings deposited by cathodic arc sputtering. Surf. Coat. Technol. 107, 115 (1998).
E.W. Niu, L. Li, G.H. Lv, H. Chen, W.R. Feng, S.H. Fan, S.Z. Yang, and X.Z. Yang: Influence of substrate bias on the structure and properties of ZrN films deposited by cathodic vacuum arc. Mater. Sci. Eng., A 460–, 135 (2007).
P.H. Mayrhofer, G. Tischler, and C. Mitterer: Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering. Surf. Coat. Technol. 142–, 78 (2001).
H.-M. Tung, J.-H. Huang, D.-G. Tsai, C.-F. Ai, and G.-P. Yu: Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment. Mater. Sci. Eng., A 500 (1–2), 104 (2009).
R.W. Siegel and G.E. Fougere: Mechanical properties of nanophase metals. Nanostruct. Mater. 6 (1–4), 205 (1995).
J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391 (6667), 561 (1998).
M. Rester, J. Neidhardt, P. Eklund, J. Emmerlich, H. Ljungcrantz, L. Hultman, and C. Mitterer: Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance. Mater. Sci. Eng., A 429 (1–2), 90 (2006).
H.S. Kim and M.B. Bush: The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11 (3), 361 (1999).
E. Török, A.J. Perry, L. Chollet, and W.D. Sproul: Young’s modulus of TiN, TiC, ZrN and HfN. Thin Solid Films 153 (1–3), 37 (1987).
A.J. Perry: A contribution to the study of Poisson’s ratios and elastic constants of TiN, ZrN and HfN. Thin Solid Films 193 /, 463 (1990).
D. Gerlich, S.L. Dole, and G.A. Slack: Elastic properties of aluminium nitride. J. Phys. Chem. Solids 47 (5), 437 (1986).
V. Mortet, M. Nesladek, K. Haenen, A. Morel, M. D’Olieslaeger, and M. Vanecek: Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering. Diamond Relat. Mater. 13 (4–8), 1120 (2004).
Acknowledgments
The Swedish Research Council (VR) Project and Linnaeus Grants as well as the VINNEX center of Excellence on Functional Nanoscale Materials (FunMat) are acknowledged for the financial support. Dr. Naureen Ghafoor, Linköping University, assisted with TEM work with instruments provided by the KAW Foundation. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rogström, L., Ahlgren, M., Almer, J. et al. Phase transformations in nanocomposite ZrAlN thin films during annealing. Journal of Materials Research 27, 1716–1724 (2012). https://doi.org/10.1557/jmr.2012.122
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2012.122