Skip to main content
Log in

Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We prepared hybrid aluminum oxide (Al2O3)/polymethyl methacrylate (PMMA) composites with tunable lamellae, produced through a two-step synthetic method: fabrication of inorganic scaffolds via ice-templating, followed by organic infiltration polymerization as a substitute for the sublimed ice. The final lamellar hybrid products show anisotropic physical properties. The thermal conductivity in both principal directions was determined for three different samples as a function of temperature (∼3 K–300 K). Typical room temperature thermal conductivities are in the range of 0.5–2.5 W/(m K), depending on the composition and direction. Across the lamellae, the thermal conductivity is well modeled by a linear series of thermal resistors, and along the lamellae it is well represented by parallel thermal resistors of continuous slabs of PMMA and ∼200-μm long slabs of Al2O3, joined by PMMA. From the thermal conductivity perspective, the Al2O3/PMMA composite is a nacre mimic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. V.R. Maria, C. Montserrat, and G. Blanca: Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem. Soc. Rev. 40(2), 596–607 (2011).

    Article  Google Scholar 

  2. R.A.S. Ferreira, P.S. Andre, and L.D. Carlos: Organic-inorganic hybrid materials towards passive and active architectures for the next generation of optical networks. Opt. Mater. 32(11), 1397–1409 (2010).

    Article  CAS  Google Scholar 

  3. P. Kumar and V.V. Guliants: Periodic mesoporous organic-inorganic hybrid materials: Applications in membrane separations and adsorption. Microporous Mesoporous Mater. 132(1–2), 1–14 (2010).

    Article  CAS  Google Scholar 

  4. K. Tsuru, S. Hayakawa, and A. Osaka: Cell proliferation and tissue compatibility of organic-inorganic hybrid materials. Key Eng. Mater. 377, 167–180 (2008).

    Article  CAS  Google Scholar 

  5. U. Schubert: Catalysts made of organic-inorganic hybrid materials. New J. Chem. 18(10), 1049–1058 (1994).

    CAS  Google Scholar 

  6. G.D. Combarieu, M. Morcrette, F. Millange, N. Guillou, J. Cabana, C.P. Grey, I. Margiolaki, G. Ferey, and J.M. Tarascon: Influence of benzoquinone sorption on the structure and electrochemical performance of the MIL-53(Fe) hybrid porous material in a lithium-ion battery. Chem. Mater. 21(8), 1602–1611 (2009).

    Article  Google Scholar 

  7. C. Sanchez, H. Arribart, and M.M.G. Guille: Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277–288 (2005).

    Article  CAS  Google Scholar 

  8. W. Suchanek and M. Yoshimura: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13(1), 94–117 (1998).

    Article  CAS  Google Scholar 

  9. H. Yamamoto, Y. Kojima, T. Okuyama, W.P. Abasolo, and J. Gril: Origin of the biomechanical properties of wood related to the fine structure of the multilayered cell wall. J. Biomech. Eng. 124, 432–440 (2002).

    Article  CAS  Google Scholar 

  10. L. Estevez, A. Kelarakis, Q.M. Gong, E.H. Da’as, and P.G. Emmanuel: Multifunctional graphene/platinum/nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 6122–6125 (2011).

    Article  CAS  Google Scholar 

  11. S. Nayar, A.K. Pramanick, A. Guha, B.K. Mahato, M. Gunjan, and A. Sinha: Biomimetic synthesis of hybrid nanocomposite scaffolds by freeze-thawing and freeze-drying. Bull. Mater. Sci. 31(3), 429–432 (2008).

    Article  CAS  Google Scholar 

  12. S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia: Freezing as a path to build complex composites. Science 311, 515–518 (2006).

    Article  CAS  Google Scholar 

  13. Y-W. Moon, K-H. Shin, Y-H. Koh, W-Y. Choi, and H-E. Kim: Production of highly aligned porous alumina ceramics by extruding frozen alumina/camphene body. J. Eur. Ceram. Soc. 31, 1945–1950 (2011).

    Article  CAS  Google Scholar 

  14. M.C. Gutierrez, M.L. Ferrer, and F. de Mon: Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 20, 634–648 (2008).

    Article  CAS  Google Scholar 

  15. C. Suwanchawalit, A.J. Patil, R.K. Kumar, S. Wongnawa, and S. Mann: Fabrication of ice-templated macroporous TiO2-chitosan scaffolds for photocatalytic applications. J. Mater. Chem. 19, 8478–8483 (2009).

    Article  CAS  Google Scholar 

  16. M.B. Jakubinek, C. Samarasekera, and M.A. White: Elephant ivory: A low thermal conductivity, high strength nanocomposite. J. Mater. Res. 21, 287–292 (2006).

    Article  CAS  Google Scholar 

  17. L.P. Tremblay, M.B. Johnson, U. Werner-Zwanziger, and M.A. White: Relationship between thermal conductivity and structure of nacre from Haliotis fulgens. J. Mater. Res. 26(10), 1216–1224 (2011).

    Article  CAS  Google Scholar 

  18. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie: Tough, bioinspired hybrid materials. Science 322, 1516–1520 (2008).

    Article  CAS  Google Scholar 

  19. M.E. Launey, E. Munch, D.H. Alsem, H.B. Barth, E. Saiz, A.P. Tomsia, and R.O. Ritchie: Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57, 2919–2932 (2009).

    Article  CAS  Google Scholar 

  20. B-Z. Zhan, M.A. White, and M. Lumsden: Bonding of organic amino, vinyl, and acryl groups to nanometer-sized NaX zeolite crystal surfaces. Langmuir 19, 4210 (2003).

    Google Scholar 

  21. O. Maldonado: Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32, 912 (1992).

    Article  Google Scholar 

  22. Z.J. Yin, S.Y. Tao, X.M. Zhou, and C.X. Ding: Evaluating microhardness of plasma sprayed Al2O3 coatings using vickers indentation. J. Phys. D: Appl. Phys. 40, 7090–7096 (2007).

    Article  CAS  Google Scholar 

  23. S. Deville, E. Saiz, and A.P. Tomsia: Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27, 5480–5489 (2006).

    Article  CAS  Google Scholar 

  24. S. Deville: Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 169 (2008).

    Article  Google Scholar 

  25. H.F. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, and A.I. Cooper: Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature 4, 787–793 (2005).

    Article  CAS  Google Scholar 

  26. K. Lu, C.S. Kessler, and R.M. Davis: Optimization of a nanoparticle suspension for freeze-casting. J. Am. Ceram. Soc. 89(8) 2459–2465 (2006).

    Article  CAS  Google Scholar 

  27. C.D. Munro and K.P. Plucknett: Aqueous colloidal characterization and forming of multimodal barium titanate powders. J. Am. Ceram. Soc. 92, 2537–2543 (2009).

    Article  CAS  Google Scholar 

  28. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard: Metastable and unstable cellular solidification of colloidal suspensions. Nat. Mater. 8(12), 966–972 (2009).

    Article  CAS  Google Scholar 

  29. B. Zhang and F.D. Blum: Thermogravimetric study of ultra thin PMMA films on silica: Effect of tacticity. Thermochim. Acta 396, 211–217 (2003).

    Article  CAS  Google Scholar 

  30. W. Yang, N. Kashani, X.W. Li, G.P. Zhang, and M.A. Meyers: Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Mat. Sci. Eng. C 1–6 (2010).

    Google Scholar 

  31. V. Ziv, H.D. Wagner, and S. Weiner: Microstructure-microhardness relations in parallel-fibered and lamellar bone. Bone 18(5), 417–428 (1996).

    Article  CAS  Google Scholar 

  32. C. Sachs, H. Fabritius, and D. Raabe: Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J. Mater. Res. 21(8), 1987–1995 (2006).

    Article  CAS  Google Scholar 

  33. M.A. White: Physical Properties of Materials (CRC Press, Boca Raton, FL, 2012).

    Google Scholar 

  34. D.G. Cahill, S-M. Lee, and T.I. Selinder: Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings. J. Appl. Phys. 83(11), 5783–5786 (1998).

    Article  CAS  Google Scholar 

  35. D. Chu, M. Touzelbaev, K.E. Goodson, S. Babin, and R.F. Pease: Thermal conductivity measurements of thin-film resist. J. Vac. Sci. Technol. B 19(6), 2874–2877 (2011).

    Article  Google Scholar 

  36. D.A.G. Bruggeman: Calculation of various physics constants in heterogeneous substances. Ann. Phys. 24, 636–679 (1935).

    Article  CAS  Google Scholar 

  37. C.P. Wong and R.S. Bollampally: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 3396–3403 (1999).

    Article  CAS  Google Scholar 

  38. F. Hojo, H. Kagawa, and Y. Takezawa: Synthesis of a polymer composite with networked α-alumina fiber and evaluation of its thermal conductivity. J. Ceram. Soc. Jpn. 119(7), 601–604 (2011).

    Article  CAS  Google Scholar 

  39. D.C. Moreira, L.A. Sphaier, J.M.L. Reis, and L.C.S. Nunes: Experimental investigation of heat conduction in polyester-Al2O3 and polyester-CuO nanocomposites. Expt. Thermal Fluid Sci. 35, 1458–1462 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Robert L. White, Josef W. Zwanziger, Peng Zhang, Jeff Dahn, Ping Li, and Patricia Scallion for help in this work. This research was financially supported by NSERC, and the Canada Foundation for Innovation, Atlantic Innovation Fund and other groups which fund the Facilities for Materials Characterization managed by the Institute for Research in Materials at Dalhousie University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Anne White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Johnson, M.B., Plucknett, K.P. et al. Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research 27, 1869–1876 (2012). https://doi.org/10.1557/jmr.2012.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.112

Navigation