Skip to main content
Log in

Composition optimization of p-type skutterudites CeyFexCo4−xSb12 and YbyFexCo4−xSb12

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To answer the fundamental questions of p-type skutterudites, systematical study on the influence of chemical composition on the electrical transport properties of RyFexCo4−xSb12 (R = Ce and Yb) has been carried out. By adjusting the filling fraction of fillers, the optimized electrical properties are obtained at the specific Fe content. It is found that the hole concentration increases with Fe content. Fe doping can also enhance the effective mass of holes significantly, which is beneficial for improving electrical performance. Because of the limit of electron supply, for trivalent Ce filling system CeyFexCo4−xSb12, the maximum figure of merit (ZT) value is achieved when Fe content is around x = 3, and for divalent Yb filling system YbyFexCo4−xSb12, the maximum ZT value is obtained even at lower Fe content. At high temperature above 700 K, the bipolar diffusion leads to great increase of total thermal conductivity and therefore deteriorates the thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
TABLE II.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

REFERENCES

  1. T. Caillat, A. Borshchevsky, and J.P. Fleurial: Properties of single crystalline semiconducting CoSb3. J. Appl. Phys. 80, 4442 (1996).

    Article  CAS  Google Scholar 

  2. D.T. Morelli, T. Caillat, J.P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher: Low-temperature transport properties of p-type CoSb3. Phys. Rev. B 51, 9622 (1995).

    Article  CAS  Google Scholar 

  3. T.M. Tritt, G.S. Nolas, G.A. Slack, A.C. Ehrlich, D.J. Gillespie, and J.L. Cohn: Low-temperature transport properties of the filled and unfilled IrSb3 skutterudite system. J. Appl. Phys. 79, 8412 (1996).

    Article  CAS  Google Scholar 

  4. D.T. Morelli and G.P. Meisner: Low-temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 77, 3777 (1995).

    Article  CAS  Google Scholar 

  5. J.P. Fleurial, A. Borshchevsky, T. Caillat, D.T. Morelli, and G.P. Meisner: High Figure of Merit in Ce-Filled Skutterudites (IEEE, New York, 1996).

    Book  Google Scholar 

  6. B.C. Sales, D. Mandrus, and R.K. Williams: Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  7. B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson: Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B 56, 15081 (1997).

    Article  CAS  Google Scholar 

  8. G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  Google Scholar 

  9. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher: High figure of merit in Eu-filled CoSb3-based skutterudites. J. Appl. Phys. 90, 1864 (2001).

    Article  CAS  Google Scholar 

  10. G.A. Lamberton, S. Bhattacharya, R.T. Littleton, M.A. Kaeser, R.H. Tedstrom, T.M. Tritt, J. Yang, and G.S. Nolas: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 80, 598 (2002).

    Article  CAS  Google Scholar 

  11. X. Shi, W. Zhang, L.D. Chen, and J. Yang: Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Phys. Rev. Lett. 95, 185503 (2005).

    Article  CAS  Google Scholar 

  12. Z.G. Mei, W. Zhang, L.D. Chen, and J. Yang: Filling fraction limits for rare-earth atoms in CoSb3: An ab initio approach. Phys. Rev. B 74, 153202 (2006).

    Article  Google Scholar 

  13. Y.Z. Pei, S.Q. Bai, X.Y. Zhao, W. Zhang, and L.D. Chen: Thermoelectric properties of EuyCo4Sb12 filled skutterudites. Solid State Sci. 10, 1422 (2008).

    Article  CAS  Google Scholar 

  14. W. Zhang, X. Shi, Z.G. Mei, Y. Xu, L.D. Chen, J. Yang, and G.P. Meisner: Predication of an ultrahigh filling fraction for K in CoSb3. Appl. Phys. Lett. 89, 112105 (2006).

    Article  Google Scholar 

  15. X. Shi, J.R. Salvador, J. Yang, and H. Wang: Thermoelectric properties of n-type multiple-filled skutterudites. J. Electron. Mater. 38, 930 (2009).

    Article  CAS  Google Scholar 

  16. J. Yang, W. Zhang, S.Q. Bai, Z. Mei, and L.D. Chen: Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr). Appl. Phys. Lett. 90, 192111 (2007).

    Article  Google Scholar 

  17. S.Q. Bai, Y.Z. Pei, L.D. Chen, W.Q. Zhang, X.Y. Zhao, and J. Yang: Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Mater. 57, 3135 (2009).

    Article  CAS  Google Scholar 

  18. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett. 92, 182101 (2008).

    Article  Google Scholar 

  19. W.Y. Zhao, P. Wei, Q.J. Zhang, C.L. Dong, L.S. Liu, and X.F. Tang: Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. J. Am. Chem. Soc. 131, 3713 (2009).

    Article  CAS  Google Scholar 

  20. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei, X.Y. Li, and T. Goto: Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092101 (2006).

    Article  Google Scholar 

  21. H. Li, X.F. Tang, Q.J. Zhang, and C. Uher: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).

    Article  Google Scholar 

  22. Z. Xiong, X. Chen, X. Huang, S. Bai, and L. Chen: High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 58, 3995 (2010).

    Article  CAS  Google Scholar 

  23. X.F. Tang, L.D. Chen, T. Goto, and T. Hirai: Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich CeyFexCo4-xSb12. J. Mater. Res. 16, 837 (2001).

    Article  CAS  Google Scholar 

  24. X.F. Tang, H. Li, Q.J. Zhang, M. Niino, and T. Goto: Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds CamCenFexCo4-xSb12. J. Appl. Phys. 100, 123702 (2006).

    Article  Google Scholar 

  25. P.N. Alboni, X. Ji, J. He, N. Gothard, and T.M. Tritt: Thermoelectric properties of La0.9CoFe3Sb12-CoSb3 skutterudite nanocomposites. J. Appl. Phys. 103, 113707 (2008).

    Article  Google Scholar 

  26. D. Berardan, E. Alleno, C. Godart, M. Puyet, B. Lenoir, R. Lackner, E. Bauer, L. Girard, and D. Ravot: Improved thermoelectric properties in double-filled Cey/2Yby/2Fe4-x(Co/Ni)xSb12 skutterudites. J. Appl. Phys. 98, 033710 (2005).

    Article  Google Scholar 

  27. G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer: Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1-xCox)4Sb12 and DDy(Fe1-xNix)4Sb12. Intermetallics 18, 57 (2010).

    Article  CAS  Google Scholar 

  28. R. Viennois, L. Girard, M.M. Koza, H. Mutka, D. Ravot, F. Terki, S. Charar, and J.C. Tedenac: Experimental determination of the phonon density of states in filled skutterudites: Evidence for a localized mode of the filling atom. Phys. Chem. Chem. Phys. 7, 1617 (2005).

    Article  CAS  Google Scholar 

  29. M.M. Koza, M.R. Johnson, R. Viennois, H. Mutka, L. Girard, and D. Ravot: Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat. Mater. 7, 805 (2008).

    Article  CAS  Google Scholar 

  30. W. Schnelle, A. Leithe-Jasper, M. Schmidt, H. Rosner, H. Borrmann, U. Burkhardt, J.A. Mydosh, and Y. Grin: Itinerant iron magnetism in filled skutterudites CaFe4Sb12 and YbFe4Sb12: Stable divalent state of ytterbium. Phys. Rev. B 72, 020402(R) (2005).

    Article  Google Scholar 

  31. D.J. Singh and I.I. Mazin: Calculated thermoelectric properties of La-filled skutterudites. Phys. Rev. B 56, R1650 (1997).

    Article  CAS  Google Scholar 

  32. W. Schnelle, A. Leithe-Jasper, H. Rosner, R. Cardoso-Gil, R. Gumeniuk, D. Trots, J.A. Mydosh, and Y. Grin: Magnetic, thermal, and electronic properties of iron-antimony filled skutterudites MFe4Sb12 (M=Na, K, Ca, Sr, Ba, La, Yb). Phys. Rev. B 77, 094421 (2008).

    Article  Google Scholar 

  33. J.S. Dyck, W.D. Chen, C. Uher, L. Chen, X.F. Tang, and T. Hirai: Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. J. Appl. Phys. 91, 3698 (2002).

    Article  CAS  Google Scholar 

  34. J. Yang, G.P. Meisner, C.J. Rawn, H. Wang, B.C. Chakoumakos, J. Martin, G.S. Nolas, B.L. Pedersen, and J.K. Stalick: Low temperature transport and structural properties of misch-metal-filled skutterudites. J. Appl. Phys. 102, 083702 (2007).

    Article  Google Scholar 

  35. G.S. Nolas, J. Sharp, and H.J. Goldsmid: Thermoelectrics: Basic Principles and New Materials Developments (Springer Verlag Berlin Heidelberg, Germany, 2001), pp. 74, 76.

    Book  Google Scholar 

  36. D.J. Singh and W.E. Pickett: Skutterudite antimonides: Quasilinear bands and unusual transport. Phys. Rev. B 50, 11235 (1994).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by National Natural Science Foundation of China (Project Nos. 50802109 and 50821004) and also supported by the National High Technology Research and Development Program of China (No. 2009AA03Z210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Qiu, P., Chen, X. et al. Composition optimization of p-type skutterudites CeyFexCo4−xSb12 and YbyFexCo4−xSb12. Journal of Materials Research 26, 1813–1819 (2011). https://doi.org/10.1557/jmr.2011.85

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.85

Navigation