Skip to main content
Log in

Effects of the microstructure of ZnO seed layer on the ZnO nanowire density

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we synthesized ZnO nanowires using Au catalytic particles formed on a ZnO seed layer. We modulated the microstructure of the ZnO seed layer by changing the sputtering power to investigate how the underlying ZnO film microstructure affects the distribution of ZnO nanowires. Examining the samples after each of the three key steps of the growth process (ZnO seed layer deposition, Au catalytic particle formation, and nanowire growth) using various characterization methods such as scanning electron microscopy, transmission electron microscopy, and x-ray diffraction helped us illuminate the profound impacts of the grain size of the seed layer on the nanowire density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoc: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  2. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  3. P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He, and H.J. Choi: Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323 (2002).

    Article  CAS  Google Scholar 

  4. H.E. Unalan, Y. Zhang, P. Hiralal, S. Dalal, D. Chu, G. Eda, K.B.K. Teo, M. Chhowalla, W.I. Milne, and G.A.J. Amaratunga: Zinc oxide nanowire networks for macroelectronic devices. Appl. Phys. Lett. 94, 163501 (2009).

    Article  Google Scholar 

  5. S. Noor Mohammad: Analysis of the vapor–liquid–solid mechanism for nanowire growth and a model for this mechanism. Nano Lett. 8, 1532 (2008).

    Article  Google Scholar 

  6. Y. Wu and P. Yang: Direct observation of vapor−liquid−solid nanowire growth. J. Am. Chem. Soc. 123, 3165 (2001).

    Article  CAS  Google Scholar 

  7. T. Ma, M. Guo, M. Zhang, Y. Zhang, and X. Wang: Density-controlled hydrothermal growth of well-aligned ZnO nanorod. Nanotechnology 18, 035605 (2007).

    Article  Google Scholar 

  8. S.-Y. Pung, K.-L. Choy, X. Hou, and C. Shan: Preferential growth of ZnO thin films by the atomic layer deposition. Nanotechnology 19, 435609 (2008).

    Article  Google Scholar 

  9. X. Wang, J. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis, and Z.L. Wang: Density-controlled growth of aligned ZnO nanowires sharing a common contact: A simple, low-cost, and mask-free technique for large-scale applications. J. Phys. Chem. B 110, 7720 (2006).

    Article  CAS  Google Scholar 

  10. H.S. Shin, J.I. Sohn, D.C. Kim, W.T.S. Huck, M.E. Welland, H.C. Choi, and D.J. Kang: Density control of ZnO nanowires grown using Au-PMMA nanoparticles and their growth behavior. Nanotechnology 20, 085601 (2009).

    Article  Google Scholar 

  11. E.W. Petersen, E.M. Likovich, K.J. Russell, and V. Narayanamurti: Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles. Nanotechnology 20, 405603 (2009).

    Article  Google Scholar 

  12. S.H. Dalal, D.L. Baptista, K.B.D. Teo, R.G. Lacerda, D.A. Jefferson, and W.I. Milne: Controllable growth of vertically aligned zinc oxide nanowires using vapour deposition. Nanotechnology 17, 4811 (2006).

    Article  CAS  Google Scholar 

  13. H.K. Park, M.H. Oh, S.-W. Kim, G.-H. Kim, D.-H. Youn, S. Lee, S.-H. Kim, K.-C. Kim, and S.-L. Maeng: Vertically well-aligned ZnO nanowires on c-Al2O3 and GaN substrates by Au catalyst. ETRI J. 28, 787 (2006).

    Article  Google Scholar 

  14. B. Nikoobakht, A. Davydov, and S.J. Stranick: Controlling the growth direction of ZnO nanowires on c-plane sapphire, in Nanoparticles and Nanowire Building Blocks-Synthesis, Processing, Characterization and Theory, edited by O.J. Glembacki and C.E. Hunt (Mater. Res. Soc. Symp. Proc. 818, Warrendale, PA, 2004), M8.25, p. 225.

    Google Scholar 

  15. Y.-H. Kang, C.-G. Choi, Y.-S. Kim, and J.-K. Kim: Influence of seed layers on the vertical growth of ZnO nanowires. Mater. Lett. 63, 679 (2009).

    Article  CAS  Google Scholar 

  16. J.H. Jung, H.S. Yoon, Y.L. Kim, M.S. Song, Y. Kim, Z.G. Chen, J. Zou, D.Y. Choi, J.H. Kang, H.J. Joyce, Q. Gao, H.H. Tan, and C. Jagadish: Vertically oriented epitaxial germanium nanowires on silicon substrates using thin germanium buffer layers. Nanotechnology 21, 295602 (2010).

    Article  Google Scholar 

  17. P.K. Sekhar, S.N. Sambandam, D.K. Sood, and S. Bhansali: Selective growth of silica nanowires in silicon catalysed by Pt thin film. Nanotechnology 17, 4606 (2006).

    Article  CAS  Google Scholar 

  18. B.-I. Hwang, K. Park, H.-S. Chun, C.-H. An, H. Kim, and H.-J. Lee: The effects of the microstructure of ZnO films on the electrical performance of their thin film transistors. Appl. Phys. Lett. 93, 222104 (2008).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (2010-0558000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyoungsub Kim or Hoo-Jeong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Lee, M.S., Park, K. et al. Effects of the microstructure of ZnO seed layer on the ZnO nanowire density. Journal of Materials Research 26, 1292–1297 (2011). https://doi.org/10.1557/jmr.2011.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.81

Navigation