Skip to main content
Log in

Thermal characterization of vertical silicon nanowires

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Arrays of vertically aligned silicon wires of 250 nm–4 μm in diameter were fabricated in a top–down process using photolithography and deep reactive ion etching at cryogenic temperatures. Using the 3-omega method, thermal conductance of vertical silicon nanowires, i.e., nanopillars, was measured immediately on-chip without the need of breaking off single wires and mounting them into a special testing device. The Seebeck coefficient was measured with 2-mm2 arrays of pillars of 260 nm in diameter, which were pressure-joined with bulk chips for testing. Testing was performed in the temperature range between 50 and 470 °C at applied temperature gradients of up to 190 °C. We found a reduction of the thermal conductivity to less than 30% of the bulk silicon, confirming that arrayed vertical nanowires fabricated in an economical top–down process can strongly promote silicon as a thermoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

REFERENCES

  1. P. Yang, R. Yan, and M. Fardy: Semiconductor nanowire: What’s next? Nano Lett. 10, 1529 (2010).

    Article  CAS  Google Scholar 

  2. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168(2008).

    Article  CAS  Google Scholar 

  3. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163(2008).

    Article  CAS  Google Scholar 

  4. P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli: Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102, 125503 (2009).

    Article  Google Scholar 

  5. C.T. Hsu, D.J. Yao, K.J. Ye, and B. Yu: Renewable energy of waste heat recovery system for automobiles. J. Renewable Sustainable Energy 2, 013105 (2010).

    Article  Google Scholar 

  6. N. Espinosa, M. Lazard, L. Aixala, and H. Scherrer: Modeling a thermoelectric generator applied to diesel automotive heat recovery. J. Electron. Mater. 39, 1446 (2010).

    Article  CAS  Google Scholar 

  7. S.Y. Park, S.J. Di Giacomo, R. Anisha, P.R. Berger, P.E. Thompson, and I. Adesida: Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6:C4F8 and self-limiting thermal oxidation on Si substrate. J. Vac. Sci. Technol. B 28, 763(2010).

    Article  CAS  Google Scholar 

  8. D. Paul: Generate Renewable Energy Efficiently using Nanofabricated Silicon (GREEN Silicon). European project EC FP7 ICT FET, http://www.greensilicon.eu/GREENSilicon/index.html.

  9. Ü. Sökmen, A. Stranz, S. Fündling, S. Merzsch, R. Neumann, H.-H. Wehmann, E. Peiner, and A. Waag: Shallow and deep dry etching of silicon using ICP cryogenic reactive ion etching process. Microsyst. Technol. 16, 863 (2010).

    Article  Google Scholar 

  10. A. Stranz, Ü. Sökmen, E. Peiner, and A. Waag: Sapphire on silicon assembly using a nanostructured compliant interface. (Techn. Dig. 22nd Intern. Conf. Eurosensors XXII, Dresden, Germany, September 7–10, 2008), p. 1246.

  11. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar: Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881 (2003).

    Article  CAS  Google Scholar 

  12. O. Bourgeois, T. Fournier, and J. Chaussy: Measurement of the thermal conductance of silicon nanowires at low temperature. J. Appl. Phys. 101, 016104 (2007).

    Article  Google Scholar 

  13. X.J. Hu, A. Antonio Padillay, J Xuz, T.S Fisher, K.E. Goodson: 3-omega measurements of vertically oriented carbon nanotubes on silicon. J. Heat Transfer 128, 1109 (2006).

    Article  CAS  Google Scholar 

  14. E. Puyoo, S. Grauby, J.-M. Rampnoux, E. Rouvière, and S. Dilhaire: Thermal exchange radius measurement: Application to nanowire thermal imaging. Rev. Sci. Instrum. 81, 073701 (2010).

    Article  Google Scholar 

  15. S. Lefèvre, S. Volz, and P.-O. Chapuis: Nanoscale heat transfer at contact betweena hot tip and a substrate. Int. J. Heat Mass Transfer 49, 251 (2006).

    Article  Google Scholar 

  16. G.D. Cahill: Thermal conductivity measurement from 30 to 750 K: The 3ω method. Rev. Sci. Instrum. 61, 802 (1990); Erratum. Rev. Sci. Instrum. 73, 3701 (2002).

    Google Scholar 

  17. Y. Sungtaek Ju: Phonon heat transport in silicon nanostructures. Appl. Phys. Lett. 87, 153106 (2005).

    Article  Google Scholar 

  18. T.H. Geballe and T.W. Hull: Seebeck effect in silicon. Phys. Rev. 98, 940 (1955).

    Article  CAS  Google Scholar 

  19. N. Neophytou, M. Wagner, H. Kosina, and S. Selberherr: Analysis of thermoelectric properties of scaled silicon nanowires using an atomistic tight-binding model. J. Electron. Mater. 39, 1902 (2010).

    Article  CAS  Google Scholar 

  20. G.D. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot: Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003).

    Article  CAS  Google Scholar 

  21. W.M. Pruessner, W.S. Rabinovich, T.H. Stievater, D. Park, and J.W. Baldwin: Cryogenic etch process development for profile control of high aspect-ratio submicron silicon trenches. J. Vac. Sci. Technol. B 25, 21 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank M. Turczyński for his valuable technical assistance during the 3-omega measurements with silicon pillars. This work is supported by the German Research Foundation (DFG) under PE 885/2-1 “Silicon-based thermoelectric nanosystems” in the framework of the priority program, SPP 1386.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Peiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stranz, A., Waag, A. & Peiner, E. Thermal characterization of vertical silicon nanowires. Journal of Materials Research 26, 1958–1962 (2011). https://doi.org/10.1557/jmr.2011.60

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.60

Navigation