Skip to main content
Log in

The influence of ∑3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We investigate the collective effect of a high volume fraction of ∑3 twin boundaries on the response of nanotwinned Cu to high dose He implantation near room temperature and find that they do not curtail the formation of vacancy and interstitial clusters. This result is rationalized through atomistic modeling, which shows that point defects at these boundaries have nearly identical properties to those in pure fcc Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. R.E. Voskoboinikov, Y.N. Osetsky, and D.J. Bacon: Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics. J. Nucl. Mater. 377, 385 (2008).

    CAS  Google Scholar 

  2. M. Kiritani and H. Takata: Dynamic studies of defect mobility using high-voltage electron-microscopy. J. Nucl. Mater. 69/70, 277 (1978).

    Google Scholar 

  3. H. Ullmaier: The influence of helium on the bulk properties of fusion-reactor structural-materials. Nucl. Fusion 24, 1039 (1984).

    CAS  Google Scholar 

  4. K. Farrell: Experimental effects of helium on cavity formation during irradiation–a review. Radiat. Eff. Defects Solids 53, 175 (1980).

    CAS  Google Scholar 

  5. S.J. Zinkle, W.G. Wolfer, G.L. Kulcinski, and L.E. Seitzman: Stability of vacancy clusters in metals II. Effect of oxygen and helium on void formation in metalsPhil. Mag. A 55, 127 (1987).

    CAS  Google Scholar 

  6. A.J.E. Foreman and B.N. Singh: The role of collision cascades and helium-atoms in cavity nucleation. Radiat. Eff. Defects Solids 113, 175 (1990).

    CAS  Google Scholar 

  7. R.E. Stoller and G.R. Odette: The effects of helium implantation on microstructural evolution in an austenitic alloy. J. Nucl. Mater. 154, 286 (1988).

    CAS  Google Scholar 

  8. G.R. Odette: On mechanisms controlling swelling in ferritic and martensitic alloys. J. Nucl. Mater. 155/156, 921 (1988).

    Google Scholar 

  9. G.R. Odette and G.E. Lucas: Embrittlement of nuclear reactor pressure vessels. JOM 53, 18 (2001).

    CAS  Google Scholar 

  10. J. Roberto and T. Diaz de la Rubia: Basic Research Needs for Advanced Nuclear Energy Systems, http://www.er.doe.gov/bes/reports/list.html (2006).

    Google Scholar 

  11. G.R. Odette and R.E. Stoller: A theoretical assessment of the effect of microchemical, microstructural and environmental mechanisms on swelling incubation in austenitic stainless steels. J. Nucl. Mater. 122, 514 (1984).

    CAS  Google Scholar 

  12. L.K. Mansur and M.H. Yoo: Effects of impurity trapping on irradiation-induced swelling and creep. J. Nucl. Mater. 74, 228 (1978).

    CAS  Google Scholar 

  13. B.N. Singh: Effect of grain size on void formation during high-energy electron irradiation of austenitic stainless steel. Philos. Mag. 29, 25 (1974).

    CAS  Google Scholar 

  14. M. Rose, A.G. Balogh, and H. Hahn: Instability of irradiation induced defects in nanostructured materials. Nucl. Inst. Meth. B 127/128, 119 (1997).

    CAS  Google Scholar 

  15. Y. Chimi, A. Iwase, N. Ishikawa, A. Kobiyama, T. Inami, and S. Okuda: Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J. Nucl. Mater. 297, 355 (2001).

    CAS  Google Scholar 

  16. N. Nita, R. Schaeublin, M. Victoria, and R.Z. Valiev: Effects of irradiation on the microstructure and mechanical properties of nanostructured materials. Philos. Mag. 85, 723 (2005).

    CAS  Google Scholar 

  17. M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria: Computer simulation of displacement cascades in nanocrystalline Ni. Phys. Rev. Lett. 88, 125505 (2002).

    CAS  Google Scholar 

  18. M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria: SIA activity during irradiation of nanocrystalline Ni. J. Nucl. Mater. 323, 213 (2003).

    CAS  Google Scholar 

  19. M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria: Atomic scale modelling of the primary damage state of irradiated fcc and bcc nanocrystalline metals. J. Nucl. Mater. 351, 47 (2006).

    CAS  Google Scholar 

  20. X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).

    CAS  Google Scholar 

  21. T. Hochbauer, A. Misra, K. Hattar, and R.G. Hoagland: Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys. 98, 123516 (2005).

    Google Scholar 

  22. X. Zhang, N. Li, O. Anderoglu, H. Wang, J.G. Swadener, Hochbauer T., Misra A., and Hoagland R.G.: Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation. Nucl. Inst. Meth. B 261, 1129 (2007).

    CAS  Google Scholar 

  23. A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).

    CAS  Google Scholar 

  24. M.J. Demkowicz and R.G. Hoagland: Structure of Kurdjumov-Sachs interfaces in simulations of a copper-niobium bilayer. J. Nucl. Mater. 372, 45 (2008).

    CAS  Google Scholar 

  25. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).

    CAS  Google Scholar 

  26. M.J. Demkowicz, J. Wang, and R.G. Hoagland: Interfaces between dissimilar crystalline solids, in Dislocations in Solids, Vol. 14, edited by J.P. Hirth (Elsevier, Amsterdam, 2008), p. 141.

    Google Scholar 

  27. A. Misra and R.G. Hoagland: Plastic flow stability of metallic nanolaminate composites. J. Mater. Sci. 42, 1765 (2007).

    CAS  Google Scholar 

  28. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 3 (2008).

    Google Scholar 

  29. A. Misra and R.G. Hoagland: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20, 2046 (2005).

    CAS  Google Scholar 

  30. A. Misra, R.G. Hoagland, and H. Kung: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021 (2004).

    CAS  Google Scholar 

  31. A.S. Argon and S. Yip: The strongest size. Philos. Mag. Lett. 86, 713 (2006).

    CAS  Google Scholar 

  32. M.F. Ashby: On interface-reaction control of Nabarro-Herring creep and sintering. Scr. Metall. 3, 837 (1969).

    CAS  Google Scholar 

  33. R.W. Siegel, S.M. Chang, and R.W. Balluffi: Vacancy loss at grain boundaries in quenched polycrystalline gold. Acta Metall. 28, 249 (1980).

    CAS  Google Scholar 

  34. A.H. King and D.A. Smith: On the mechanisms of point-defect absorption by grain and twin boundaries. Philos. Mag. A 42, 495 (1980).

    CAS  Google Scholar 

  35. M. Dollar and H. Gleiter: Point defect annihilation at grain boundaries in gold. Scr. Metall. 19, 481 (1985).

    CAS  Google Scholar 

  36. P.L. Lane and P.J. Goodhew: Helium bubble nucleation at grain-boundaries. Philos. Mag. A 48, 965 (1983).

    CAS  Google Scholar 

  37. B.N. Singh, T. Leffers, W.V. Green, and M. Victoria: Nucleation of helium bubbles on dislocations, dislocation networks and dislocations in grain-boundaries during 600 MEV proton irradiation of aluminum. J. Nucl. Mater. 125, 287 (1984).

    CAS  Google Scholar 

  38. P.A. Thorsen, J.B. Bilde-Sorensen, and B.N. Singh: Bubble formation at grain boundaries in helium implanted copper. Scr. Mater. 51, 557 (2004).

    CAS  Google Scholar 

  39. P.A. Thorsen, J.B. Bilde-Sorensen, and B.N. Singh: Influence of grain boundary structure on bubble formation behaviour in helium implanted copper. Mater. Sci. Forum 207/208, 445 (1996).

    Google Scholar 

  40. M.R. Sorensen, Y. Mishin, and A.F. Voter: Diffusion mechanisms in Cu grain boundaries. Phys. Rev. B 62, 3658 (2000).

    CAS  Google Scholar 

  41. A. Suzuki and Y. Mishin: Interaction of point defects with grain boundaries in fcc metals. Interface Sci. 11, 425 (2003).

    CAS  Google Scholar 

  42. A. Suzuki and Y. Mishin: Atomistic modeling of point defects and diffusion in copper grain boundaries. Interface Sci. 11, 131 (2003).

    CAS  Google Scholar 

  43. A. Seki, D.N. Seidman, Y. Oh, and S.M. Foiles: Monte Caro simulations of segregation at [001] twist boundaries in a Pt(Au) alloy—I. results. Acta Metall. Mater. 39, 3167 (1991).

    CAS  Google Scholar 

  44. A. Seki, D.N. Seidman, Y. Oh, and S.M. Foiles: Monte Carlo simulations of segregation at (001) twist boundaries in a Pt(Au) alloy—II.Discussion Acta Metall. Mater. 39, 3179 (1991).

    CAS  Google Scholar 

  45. T. Kwok, P.S. Ho, and S. Yip: Molecular-dynamics studies of grain-boundary diffusion. I. Structural properties and mobility of point defects. Phys. Rev. B 29, 5354 (1984).

    CAS  Google Scholar 

  46. T. Kwok, P.S. Ho, and S. Yip: Molecular-dynamics studies of grain-boundary diffusion. II. Vacancy migration, diffusion mechanism, and kinetics. Phys. Rev. B 29, 5363 (1984).

    CAS  Google Scholar 

  47. M.S. Daw and M.I. Baskes: Embedded-atom method - derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    CAS  Google Scholar 

  48. A.F. Voter: Embedded Atom Method Potentials for Seven FCC Metals: Ni, Pd, Pt, Cu, Ag, Au, and Al. LANL Unclassified Technical Report No. LA-UR93–3901 (1993).

    Google Scholar 

  49. A.F. Voter: The embedded atom method, in Intermetallic Compounds: Principles and Practice, Vol. 1, edited by J.H. Westbrook and R.L. Fleischer (Wiley, New York, 1994) p. 77.

    Google Scholar 

  50. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).

    Google Scholar 

  51. M.J. Demkowicz and R.G. Hoagland: Simulations of collision cascades in Cu-Nb layered composites using an EAM interatomic potential. Int. J. Appl. Mech. 1, 421 (2009).

    Google Scholar 

  52. A. Kashinath and M.J. Demkowicz: A predictive interatomic potential for He in Cu and Nb. Model. Simul. Mater. Sci. Eng. 19, 035007 (2011).

    Google Scholar 

  53. L.E. Murr: Temperature coefficient of twin-boundary energy—determination of stacking-fault energy from coherent twin-boundary energy in pure fcc metals. Scr. Metall. 6, 203 (1972).

    CAS  Google Scholar 

  54. P. Ehrhart: in Atomic Defects in Metals, edited by H. Ullmaier, Landolt-Börnstein New Series III, Vol. 25 (Springer, Berlin, 1991) p. 88.

    Google Scholar 

  55. C. Domain and A. Legris: Ab initio atomic-scale determination of point-defect structure in hcp zirconium. Philos. Mag. 85, 569 (2005).

    CAS  Google Scholar 

  56. P. Ehrhart: The configuration of atomic defects as determined from scattering studies. J. Nucl. Mater. 69/70, 200 (1978).

    Google Scholar 

  57. H.E. Schaefer and W. Dander: The magnetic after-effect spectrum in cobalt between 20 and 350 K after electron irradiation at 4.2 K. Phys. Status Solidi B 78, 139 (1976).

    CAS  Google Scholar 

  58. F.J. Perez-Perez and R. Smith: Structural changes at grain boundaries in bcc iron induced by atomic collisions. Nucl. Inst. Meth. B 164, 487 (2000).

    Google Scholar 

  59. K. Dettmann, G. Leibfried, and K. Schroeder: Spontaneous recombination of frenkel pairs for electron irradiation. Phys. Status Solidi 22, 423 (1967).

    CAS  Google Scholar 

  60. R. Lennartz, F. Dworschak, and H. Wollenberger: Frenkel pair recombination radius in copper as a function of temperature. J. Phys. F 7, 2011 (1977).

    CAS  Google Scholar 

  61. F. Dworschak, R. Lennartz, and H. Wollenberger: Interstitial trapping and detrapping in electron-irradiated dilute copper-alloysJ. Phys. F 5, 400 (1975).

    CAS  Google Scholar 

  62. W.G. Wolfer and A. Si-Ahmed: On the coefficient for bulk recombination of vacancies and interstitials. J. Nucl. Mater. 99, 117 (1981).

    CAS  Google Scholar 

  63. G.V. Kidson: Vacancy-interstitial recombination coefficients in radiation-induced growth models. J. Nucl. Mater. 118, 115 (1983).

    CAS  Google Scholar 

  64. B. Grant, J.M. Harder, and D.J. Bacon: Interstitial-vacancy recombination for model BCC transition metals. J. Nucl. Mater. 171, 412 (1990).

    CAS  Google Scholar 

  65. J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  66. B.P. Uberuaga, R.G. Hoagland, A.F. Voter, and S.M. Valone: Direct transformation of vacancy voids to stacking fault tetrahedra. Phys. Rev. Lett. 99, 135501 (2007).

    CAS  Google Scholar 

  67. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley, and X. Zhang: Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93, 083108 (2008).

    Google Scholar 

  68. X. Zhang, H. Wang, X.H. Chen, L. Lu, K. Lu, R.G. Hoagland, and A. Misra: High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett. 88, 173116 (2006).

    Google Scholar 

  69. X.W. Zhou and H.N.G. Wadley: Twin formation during the atomic deposition of copper. Acta Mater. 47, 1063 (1999).

    CAS  Google Scholar 

  70. X. Zhang, O. Anderoglu, A. Misra, and H. Wang: Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films. Appl. Phys. Lett. 90, 153101 (2007).

    Google Scholar 

  71. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).

    CAS  Google Scholar 

  72. X. Zhang, A. Misra, H. Wang, T.D. Shen, M. Nastasi, T.E. Mitchell, J.P. Hirth, R.G. Hoagland, and J.D. Embury: Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater. 52, 995 (2004).

    CAS  Google Scholar 

  73. O. Anderoglu, A. Misra, H. Wang, and X. Zhang: Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103, 094322 (2008).

    Google Scholar 

  74. B.N. Singh and S.J. Zinkle: Defect accumulation in pure fcc metals in the transient regime—a review. J. Nucl. Mater. 206, 212 (1993).

    CAS  Google Scholar 

  75. W. Jager and H. Trinkaus: Defect ordering in metals under irradiation. J. Nucl. Mater. 205, 394 (1993).

    Google Scholar 

  76. P.B. Johnson and D.J. Mazey: The helium gas bubble superlattice–structural features. J. Nucl. Mater. 127, 30 (1985).

    CAS  Google Scholar 

  77. P.B. Johnson and D.J. Mazey: Helium gas bubble lattices in face-centerd-cubic metals. Nature 276, 595 (1978).

    CAS  Google Scholar 

  78. P.B. Johnson, R.W. Thomson, and K. Reader: TEM and SEM studies of radiation blistering in helium-implanted copper. J. Nucl. Mater. 273, 117 (1999).

    CAS  Google Scholar 

  79. G.S. Was: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2007).

    Google Scholar 

Download references

Acknowledgment

The authors thank R.R. Greco for conducting the He implantations for this study. This research was funded by the LANL Directed Research and Development program. The replacement collision sequence, collision cascade, and reaction-diffusion modeling was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. 2008LANL1026 through the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center. XZ acknowledges financial support by NSF-DMR metallic materials and nanostructures program under Grant No. 0644835.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Demkowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demkowicz, M.J., Anderoglu, O., Zhang, X. et al. The influence of ∑3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu. Journal of Materials Research 26, 1666–1675 (2011). https://doi.org/10.1557/jmr.2011.56

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.56

Navigation