Skip to main content
Log in

Mg-based bulk metallic glasses: Elastic properties and their correlations with toughness and glass transition temperature

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, elastic properties of Mg-based bulk metallic glasses (BMGs) with different chemical compositions were investigated. By compositional tuning in the quaternary Mg–Cu–Ag–Y alloys, the Poisson’s ratio ν of 0.332 is achieved at Mg56Cu21Ag14Y9 BMG, in excess of the previously suggested critical value (ν = 0.31–0.32) for the brittle-to-tough transition in metallic glasses. With the properties of the constituent elements, the predicted values of the bulk modulus B and shear modulus μ of Mg-based BMGs are 8% and 10% greater than the measured value, respectively. Notch toughness KQ of the ten investigated Mg-based BMGs varies between 3.6 and 8.2 MPa√m. Intrinsic brittleness of Mg glass is associated with its tiny plastic zone size (in micrometer scale) and weak resistance to crack propagation. The toughness variations are lack of significant correlation with the ν or μ. Among the investigated alloys, the Mg59.5Cu22.9Ag6.6Gd11 BMG manifests a good combination of improved toughness and high glass-forming ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  2. M. Ashby and A.L. Greer: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).

    Article  CAS  Google Scholar 

  3. J. Xu, U. Ramamurty, and E. Ma: The fracture toughness of bulk metallic glasses. JOM. 62, 10 (2010).

    Article  CAS  Google Scholar 

  4. J.J. Lewandowski, W.H. Wang, and A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).

    Article  CAS  Google Scholar 

  5. J.J. Lewandowski, X.J. Gu, A.S. Nouri, S.J. Poon, and G.J. Shiflet: Tough Fe-based bulk metallic glasses. Appl. Phys. Lett. 92, 091918 (2008).

    Article  Google Scholar 

  6. P. Jia, Z.D. Zhu, E. Ma, and J. Xu: Notch toughness of Cu-based bulk metallic glasses. Scr. Mater. 61, 137 (2009).

    Article  CAS  Google Scholar 

  7. M.D. Demetriou, G. Kaltenboeck, J.Y. Suh, G. Garrett, M. Floyd, C. Crewdson, D.C. Hofmann, H. Kozachkov, A. Wiest, J.P. Schramm, and W.L. Johnson: Glassy steel optimized for glass-forming ability and toughness. Appl. Phys. Lett. 95, 041907 (2009).

    Article  Google Scholar 

  8. C.P. Kim, J.-Y. Suh, A. Wiest, M.L. Lind, R.D. Conner, and W.L. Johnson: Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses. Scr. Mater. 60, 80 (2009).

    Article  CAS  Google Scholar 

  9. Q. He, Y.Q. Cheng, E. Ma, and J. Xu: Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization. Acta Mater. 59, 202 (2011).

    Article  CAS  Google Scholar 

  10. H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005).

    Article  Google Scholar 

  11. Q. Zheng, J. Xu, and E. Ma: High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys. J. Appl. Phys. 102, 113519 (2007).

    Article  Google Scholar 

  12. X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, and J.J. Lewandowski: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).

    Article  CAS  Google Scholar 

  13. J. Schroers and W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).

    Article  Google Scholar 

  14. Y.Q. Cheng, A.J. Cao, and E. Ma: Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater. 57, 3253 (2009).

    Article  CAS  Google Scholar 

  15. W.L. Johnson and K. Samwer: A universal criterion for plastic yielding of metallic glasses with a (T/ Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    Article  CAS  Google Scholar 

  16. L. Zhang, Y.-Q. Cheng, A.-J. Cao, J. Xu, and E. Ma: Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater. 57, 1154 (2009).

    Article  CAS  Google Scholar 

  17. X.J. Gu, A.G. Mcdermott, S.J. Poon, and G.J. Shiflet: Critical Poisson’s ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel. Appl. Phys. Lett. 88, 211905 (2006).

    Article  Google Scholar 

  18. X.J. Gu, S.J. Poon, G.J. Shiflet, and J.J. Lewandowski: Compressive plasticity and toughness of a Ti-based bulk metallic glass. Acta Mater. 58, 1708 (2010).

    Article  CAS  Google Scholar 

  19. Y. Zhang and A.L. Greer: Correlations for predicting plasticity or brittleness of metallic glasses. J. Alloy. Comp. 434-435, 2 (2007).

    Article  Google Scholar 

  20. H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma: Achieving exceptional glass-forming ability by substitutional alloying in Mg-Cu-Y: The effects of Ag versus Ni. J. Mater. Res. 21, 2204 (2006).

    Article  CAS  Google Scholar 

  21. Q. Zheng, H. Ma, E. Ma, and J. Xu: Mg–Cu–(Y, Nd) pseudo-ternary bulk metallic glasses: The effects of Nd on glass-forming ability and plasticity. Scr. Mater. 55, 541 (2006).

    Article  CAS  Google Scholar 

  22. Q. Zheng, S. Cheng, J.H. Strader, E. Ma, and J. Xu: Critical size and strength of the best bulk metallic glass former in the Mg−Cu−Gd ternary system. Scr. Mater. 56, 161 (2007).

    Article  CAS  Google Scholar 

  23. L.L. Shi and J. Xu: to be published.

  24. Y. Murakami: Stress Intensity Factors Handbook. Vol. 2 (Pergamon, Oxford, UK, 1987), p. 666.

    Google Scholar 

  25. J.-Y. Suh, R.D. Conner, C.P. Kim, M.D. Demetriou, and W.L. Johnson: Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses. J. Mater. Res. 25, 982 (2010).

    Article  CAS  Google Scholar 

  26. T. Egami, S.J. Poon, Z. Zhang, and V. Keppens: Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network. Phys. Rev. B. 76, 024203 (2007).

    Article  Google Scholar 

  27. J.J. Gilman: Electronic Basis of the Strength of Materials. (Cambridge University Press, UK, 2003), p. 113.

    Google Scholar 

  28. M. Fukuhara, M. Takahashi, Y. Kawazoe, and A. Inoue: Role of valence electrons for formation of glassy alloys. J. Alloy. Comp. 483, 623 (2009).

    Article  CAS  Google Scholar 

  29. P. Jóváril, K. Saksl, N. Pryds, B. Lebech, N.P. Bailey, A. Mellergård, R.G. Delaplane, and H. Franz: Atomic structure of glassy Mg60Cu30Y10 investigated with EXAFS, x-ray and neutron diffraction, and reverse Monte Carlo simulations. Phys. Rev. B 76, 054208 (2004).

    Article  Google Scholar 

  30. T. Fukunaga, H. Sugiura, N. Takeichi, and U. Mizutani: Experimental studies of atomic structure, electronic structure, and the electronic transport mechanism in amorphous Al-Cu-Y and Mg-Cu-Y ternary alloys. Phys. Rev. B 54, 3200 (1996).

    Article  CAS  Google Scholar 

  31. H.S. Chen, J.T. Krause, and E. Coleman: Elastic constants, hardness and their implications to flow properties of metallic glasses. J. Non-cryst. Solids. 18, 157 (1975).

    Article  CAS  Google Scholar 

  32. S.J. Poon, A. Zhu, and G.J. Shiflet: Poisson’s ratio and intrinsic plasticity of metallic glasses. Appl. Phys. Lett. 92, 261902 (2008).

    Article  Google Scholar 

  33. W.L. Johnson, M.D. Demetriou, J.S. Harmon, M.L. Lind, and K. Samwer: Rheology and ultrasonic properties of metallic glass-forming liquids: A potential energy landscape perspective. MRS Bull. 32, 644 (2007).

    Article  CAS  Google Scholar 

  34. M.D. Demetriou, W.L. Johnson, and K. Samwer: Coarse-grained description of localized inelastic deformation in amorphous metals. Appl. Phys. Lett. 94, 191905 (2009).

    Article  Google Scholar 

  35. A. Castellero, B. Moser, D.I. Uhlenhaut, F.H. Dalla Torre, and J.F. Löffler: Room-temperature creep and structural relaxation of Mg-Cu-Y metallic glasses. Acta Mater. 56, 3777 (2008).

    Article  CAS  Google Scholar 

  36. A. Niikura, A.P. Tsai, A. Inoue, and T. Masumoto: Chemical structural relaxation-induced embrittlement in amorphous Mg-Cu-Y alloys. J. Non-Cryst. Solids 159, 229 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the stimulating discussions with Profs. A.L. Greer and E. Ma. This work was supported by the National Basic Research Program of China (973 Program) under Contract No. 2007CB613906 and National Natural Science Foundation of China under Grant No. 50871112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SG., Shi, LL. & Xu, J. Mg-based bulk metallic glasses: Elastic properties and their correlations with toughness and glass transition temperature. Journal of Materials Research 26, 923–933 (2011). https://doi.org/10.1557/jmr.2011.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.5

Navigation