Abstract
We have demonstrated resistance switching using polycrystalline HfO2 film with a Cu top electrode for nonvolatile memory applications and revealed the Cu diffusion into the HfO2 layer during the filament formation process. Resistive switching was clearly observed in the Cu/HfO2/Pt structure by performing a current–voltage measurement. The current step from a high-resistive state to a low-resistive state was of the order of 103–104 Ω, which provided a sufficient on/off ratio for use as a switching device. The filament formation process was investigated by employing hard x-ray photoelectron spectroscopy under bias operation. The application of a bias to the structure reduced the Cu2O state at the interface and the intensity ratio of Cu 2p3/2/Hf 3d5/2, providing evidence of Cu2O reduction and Cu diffusion into the HfO2 layer. These results also provide evidence that the resistance switching of the Cu/HfO2/Pt structure originates in a solid electrolyte (nanoionics model) containing Cu ions.
Similar content being viewed by others
REFERENCES
R. Waser: Resistive non-volatile memory devices. Microelectron. Eng. 86, 1925 (2009).
S.F. Karg, G.I. Meijer, J.G. Bednorz, C.T. Rettner, A.G. Schtorr, E.A. Joseph, C.H. Lam, M. Janousch, U. Staub, F. La Mattina, S.F. Alvarado, D. Widmer, R. Stutz, U. Drechsler, and D. Caimi: Transition-metal-oxide-based resistance-change memories. IBM J. Res. Dev. 52, 481 (2008).
H. Pagnia and N. Sotnik: Bistable switching in electroformed metal–insulator–metal devices. Phys. Status Solidi A 108, 11 (1988).
F.A. Chudnovskii, L.L. Odynets, A.L. Pergament, and G.B. Stefanovich: Electroforming and switching in oxides of transition metals: The role of metal–insulator transition in the switching mechanism. J. Solid State Chem. 122, 95 (1996).
A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura: Current switching of resistive states in magnetoresistive manganites. Nature 388, 50 (1997).
R. Fors, S.I. Khartsev, and A.M. Grishin: Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition. Phys. Rev. B 71, 045305 (2005).
D.S. Kim, Y.H. Kim, C.E. Lee, and Y.T. Kim: Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure: Evidence for a Mott transition. Phys. Rev. B 74, 174430 (2006).
G.I. Meijer, U. Staub, M. Janousch, S.L. Johnson, B. Delley, and T. Neisius: Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3. Phys. Rev. B 72, 155102 (2005).
R. Waser and M. Aono: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007).
T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono: Nanometer-scale switches using copper sulfide. Appl. Phys. Lett. 82, 3032 (2003).
N. Banno, T. Sakamoto, T. Hasegawa, K. Terabe, and M. Aono: Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch. Jpn. J. Appl. Phys. 46, 3666 (2006).
K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono: Quantized conductance atomic switch. Nature 433, 47 (2005).
M.N. Kozicki, M. Park, and M. Mitkova: Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331 (2005).
Y-M. Kim and J-S. Lee: Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. J. Appl. Phys. 104, 114115 (2008).
T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono: Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 92110 (2007).
S. Lee, W-G. Kim, S-W. Rhee, and K. Yong: Resistance switching behaviors of hafnium oxide films grown by MOCVD for nonvolatile memory applications. J. Electrochem. Soc. 155, H92 (2008).
J.F. Gibbons and W.E. Beadle: Switching properties of thin NiO films. Solid-State Electron. 7, 785 (1964).
T. Tsuchiya, Y. Oyama, S. Miyoshi, and S. Yamaguchi: Nonstoichiometry-induced carrier modification in gapless type atomic switch device using Cu2S Mixed Conductor. Appl. Phys. Express 2, 055002 (2009).
M. Haemori, T. Nagata, and T. Chikyow: Impact of Cu electrode on switching behavior in a Cu/HfO2/Pt structure and resultant Cu ion diffusion. Appl. Phys. Express 2, 061401 (2009).
G.D. Wilk and R.M. Wallace: Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon. Appl. Phys. Lett. 74, 2854 (1999).
J. Robertson: High-dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).
J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, and R.S. Williams: The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009).
C. Yoshida, K. Kinoshita, T. Yamasaki, and Y. Sugiyama: Direct observation of oxygen movement during resistance switching in NiO/Pt film. Appl. Phys. Lett. 93, 042106 (2008).
H. Shima, F. Takano, H. Muramatsu, M. Yamazaki, H. Akinaga, and A. Kogure: Local chemical state change in Co–O resistance random-access memory. Phys. Status Solidi RRL. 2, 99 (2008).
Y. Yamashita, K. Ohmori, S. Ueda, H. Yoshikawa, T. Chikyow, and K. Kobayashi: Bias-voltage application in hard x-ray photoelectron spectroscopy for characterization of advanced materials. e-J. Surf. Sci. Nanotechnol. 8, 81 (2010).
T. Nagata, M. Haemori, Y. Yamashita, Y. Iwashita, H. Yoshikawa, K. Kobayashi, and T. Chikyow: Oxygen migration at Pt/HfO2/Pt interface under bias operation. Appl. Phys. Lett. 97, 082902 (2010).
T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono: Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology 21, 425205 (2010).
S. Ueda, M. Tanaka, H. Yoshikawa, Y. Yamashita, Y. Matsushita, K. Kobayashi, Y. Katsuya, and S. Ishimaru: Present status of the NIMS contract beamline BL15XU at SPring-8. AIP Conf. Proc. 1234, 403 (2010).
S. Doniach and M. Šunjić: Many-electron singularity in x-ray photoemission and x-ray line spectra from metals. J. Phys. Chem. 3, 285 (1970).
D.A. Shirley: High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B. 5, 4709 (1972).
S. Tanuma, C.J. Powell, and D.R. Penn: Calculations of electron inelastic mean free paths for 31 materials. Surf. Interface Anal. 11, 577 (1988).
C.J. Powell, A. Jablonski, I.S. Tilinin, S. Tanuma, and D.R. Penne: Surface sensitivity of Auger-electron spectroscopy and x-ray photoelectron spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 98, 1 (1999).
S. Tanuma: Electron scattering effect on surface electron spectroscopies. J. Surf. Sci. Soc. Jpn. 27, 657 (2006).
J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, and R. S. Williams: Memoristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008).
H. Schroeder and D.S. Jeong: Resistive switching in a Pt/TiO2/Pt thin film stack—a candidate for a non-volatile ReRAM. Microelectron. Eng. 84, 1982 (2007).
S. Poulston, P.M. Parlett, P. Stone, and M. Bowker: Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 24, 811 (1996).
A. Galtayrise and J-P. Bonnelle: XPS and ISS studies on the interaction of H2S with polycrystalline Cu, Cu2O and CuO surfaces. Surf. Interface Anal. 23, 171 (1995).
T.N. Rhodin Jr.: Low temperature oxidation of copper. I. Physical mechanism. J. Am. Chem. Soc. 72, 5102 (1950).
J. Iijima, J-W. Lim, S-H. Hong, S. Suzuki, K. Mimura, and M. Isshiki: Native oxidation of ultra high purity Cu bulk and thin films. Appl. Surf. Sci. 253, 2825 (2006).
F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, and G. Hollinger: Microscopic structure of the SiO2/Si interface. Phys. Rev. B: Condens. Matter 38, 6084 (1988).
K. Kobayashi, M. Yabashi, Y. Takata, T. Tokushima, S. Shin, K. Tamasaku, D. Miwa, T. Ishikawa, H. Nohira, T. Hattori, Y. Sugita, O. Nakatsuka, A. Sakai, and S. Zaima: High resolution-high energy x-ray photoelectron spectroscopy using third-generation synchrotron radiation source, and its application to Si-high k insulator systems. Appl. Phys. Lett. 83, 1005 (2003).
D. Barreca, A. Milanov, R.A. Fischer, A. Devi, and E. Tondello: Hafnium oxide thin film grown by ALD: An XPS study. Surf. Sci. Spectra 14, 34 (2007).
Z. Paàl, M. Muhler, and R. Schlögl: Platinum black by XPS. Surf. Sci. Spectra 4, 119 (1996).
M-C. Jung, H-D. Kim, M. Han, W. Jo, and D.C. Kim: X-ray photoelectron spectroscopy study of Pt-oxide thin films deposited by reactive sputtering using O2/Ar gas mixtures. Jpn. J. Appl. Phys. 38, 4872 (1999).
V. Matolín, M. Cabala, I. Matolínová, M. Škoda, M. Václavů, K.C. Prince, T. Skála, T. Mori, H. Yoshikawa, Y. Yamashita, S. Ueda, and K. Kobayashi: Pt and Sn doped sputtered CeO2 electrodes for fuel cell application. Fuel Cells (Weinh.) 10, 139 (2010).
A.J. Bard and L.R. Faulkner: Electrochemical Methods. Fundamentals and Applications, 2nd ed. (John Wiley & Sons Inc, New York, 2001), pp. 808–809.
M. Yoshitake, Y-R. Aparna, and K. Yoshihara: General rule for predicting surface segregation of substrate metal on film surface. J. Vac. Sci. Technol. A 19, 1432 (2001).
H. Takeuchi, D. Ha, and T-J. King: Observation of bulk HfO2 defects by spectroscopic ellipsometry. J. Vac. Sci. Technol. A 22, 1337 (2004).
K. Ohmori, P. Ahmet, M. Yoshitake, T. Chikyow, K. Shiraishi, K. Yamabe, H. Watanabe, Y. Akasaka, Y. Nara, K-S. Chang, M.L. Green, and K. Yamada: Influences of annealing in reducing and oxidizing ambients on flatband voltage properties of HfO2 gate stack structures. J. Appl. Phys. 101, 084118 (2007).
ACKNOWLEDGMENTS
We are grateful to Hiroshima Synchrotron Radiation Center (HiSOR), Hiroshima University, and the Japan Atomic Energy Agency (JAEA)/SPring-8 for the development of HX-PES at BL15XU in SPring-8. The HX-PES measurements were performed under the approval of the NIMS Beamline Station (Proposal No. 2009A 4600 and 2010B 4600). This work was supported in part by a grant-in-aid for Key Technology, “Atomic Switch Programmed Device” from Japan’s Ministry of Education, Culture, Sports, Science, and Technology.
We are also deeply grateful to many colleagues, in particular, Mr. Satoshi Ishimaru of SPring-8 Service, Mr. Tetsuya Adachi of National Institute for Materials Science (NIMS), Mr. Yutaka Iwashita, and Mr. Yuji Kiyota of Meiji University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nagata, T., Haemori, M., Yamashita, Y. et al. Observation of filament formation process of Cu/HfO2/Pt ReRAM structure by hard x-ray photoelectron spectroscopy under bias operation. Journal of Materials Research 27, 869–878 (2012). https://doi.org/10.1557/jmr.2011.448
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2011.448