Abstract
Yttria-stabilized zirconia (YSZ)/Al2O3 multilayers deposited on Pt foil were studied by differential scanning calorimetry. Observed thermal effects were interpreted using additional evidence from x-ray diffraction and transmission electron microscopy. The crystallization temperature of YSZ increases from 344 to 404 °C as the layer thickness decreases from 15 to 4 nm. The enthalpy of crystallization becomes more exothermic with decreasing thickness, and it was measured to be −26 kJ/mol YSZ for 4-nm-thick layers and −12 kJ/mol for 15-nm-thick layers. The latter value is consistent with the reported crystallization enthalpy for YSZ powder of the same composition prepared by precipitation from aqueous solution. The more exothermic crystallization enthalpies for thinner films are indicative of a decrease in their degree of crystallinity. The 2–6-nm-thick Al2O3 layers remain amorphous when heated to 1000 °C. The described methodology enables thermal analysis of oxide thin films using commercial instruments.
Similar content being viewed by others
REFERENCES
K.C. Radford and R.J. Bratton: Zirconia electrolyte cells. J. Mater. Sci. 14(1), 59 (1979).
M.J. Verkerk, A.J.A. Winnubst, and A. J. Burggraaf: Effect of impurities on sintering and conductivity of yttria-stabilized zirconia. J. Mater. Sci. 17(11), 3113 (1982).
E.P. Butler and J. Drennan: Microstructural analysis of sintered high-conductivity zirconia with Al203 additions. J. Am. Ceram. Soc. 65(10), 474 (1982).
K. Tsukuma, K. Ueda, and M. Shimada: Strength and fracture toughness of isostatically hot-pressed composites of Al2O3 and Y2O3-partially-stabilized ZrO2. J. Am. Ceram. Soc. 68(1), C–4 (1985).
S.P.S. Badwal: Effect of alumina and monoclinic zirconia on the electrical conductivity of Sc2O3-ZrO2 compositions. J. Mater. Sci. 18(11), 3230 (1983).
A. Peters, C. Korte, D. Hesse, N. Zakharov, and J. Janek: Ionic conductivity and activation energy for oxygen ion transport in superlattices–The multilayer system CSZ (ZrO2 + CaO) / Al2O3. Solid State Ion. 178(1-2), 67 (2007).
C. Michaelsen, K. Barmak, and T. P. Weihs: Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry. J. Phys. D: Appl. Phys. 30(23), 3167 (1997).
F. Spaepen and C.V. Thompson: Calorimetric studies of reactions in thin films and multilayers. Appl. Surf. Sci. 38(1–4), 1 (1989).
W. Zhou, S.V. Ushakov, T. Wang, J.G. Ekerdt, A.A. Demkov, and A. Navrotsky: “Hafnia: Energetics of thin films and nanoparticles. J. Appl. Phys. 107(12), 123514 (2010).
S. V. Ushakov, A. Navrotsky, Y. Yang, S. Stemmer, K. Kukli, M. Ritala, M. A. Leskelä, P. Fejes, A. Demkov, C. Wang, B. Y. Nguyen, D. Triyoso, and P. Tobin: Crystallization in hafnia- and zirconia-based systems. Phys. Status Solidi B 241(10) 2268 (2004).
S. Chen, H.J. Avila-Paredes, S. Kim, J. Zhao, Z.A. Munir, and A. Navrotsky: Direct calorimetric measurement of grain boundary and surface enthalpies in yttria-stabilized zirconia. Phys. Chem. Chem. Phys. 11(17), 3039 (2009).
G.C.C. Costa, S.V. Ushakov, R.H.R. Castro, A. Navrotsky, and R. Muccillo: Calorimetric measurement of surface and interface enthalpies of yttria-stabilized zirconia (YSZ). Chem. Mater. 22(9), 2937 (2010).
N. Kemik, S. V. Ushakov, N. Schichtel, C. Korte, Y. Takamura, and A. Navrotsky: Synthesis and calorimetric studies of oxide multilayer systems: Solid oxide fuel cell cathode and electrolyte materials. J. Vac. Sci. Technol. B 28(4), C5A1 (2010).
D.B. Chrisey and G.K. Hubler: Pulsed Laser Deposition of Thin Films (Wiley, Hoboken, NJ, 1994).
P.R. Willmott and J.R. Huber: Pulsed laser vaporization and deposition. Rev. Mod. Phys. 72(1), 315 (2000).
N.D. Browning, M.F. Chisholm, and S. J. Pennycook: Atomic-resolution chemical-analysis using a scanning-transmission electron-microscope. Nature 366(6451), 143 (1993).
S. J. Pennycook and D. E. Jesson: Atomic resolution Z-contrast imaging of interfaces. Acta Metall. Mater. 40, S149 (1992).
Z. H. Lu, D. J. Lockwood, and J. M. Baribeau: Visible light emitting Si/SiO2 superlattices. Solid State Electron. 40(1–8), 197 (1996).
M. Zacharias, J. Blasing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet: Thermal crystallization of amorphous Si/SiO2 superlattices. Appl. Phys. Lett. 74(18), 2614 (1999).
G.V.M. Williams, A. Bittar, and H. J. Trodahl: Crystallization and diffusion in progressively annealed a-Ge/SiO[sub x] superlattices. J. Appl. Phys. 67(4), 1874 (1990).
S.V. Ushakov, C.E. Brown, and A. Navrotsky: Effect of La and Y on crystallization temperatures of hafnia and zirconia. J. Mater. Res. 19(3), 693 (2004).
N. Kemik: The energetics of oxide multilayer systems: SOFC cathode and electrolyte materials. PhD Thesis, Chemical Engineering and Materials Science, University of California, Davis, Davis, 2011.
C.G. Bergeron and S.H. Risbud: Introduction to Phase Equilibria in Ceramics (American Ceramic Society, Urbana, IL, 1984).
ACKNOWLEDGMENTS
The authors thank Ricardo Castro for insightful discussions of the calorimetric data. The work at UC Davis was supported by the U.S. Department of Energy (for DSC) (Office of Basic Energy Sciences Grant No. DEFG-02-03ER46053) and by the National Science Foundation (for sample preparation) (grant DMR 0747896).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kemik, N., Ushakov, S.V., Gu, M. et al. Yttria-stabilized zirconia crystallization in Al2O3/YSZ multilayers. Journal of Materials Research 27, 939–943 (2012). https://doi.org/10.1557/jmr.2011.439
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2011.439