Skip to main content
Log in

Excitation spectrum of point defects in semiconductors studied by time-dependent density functional theory

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A common fingerprint of the electrically active point defects in semiconductors is the transition among their localized defect states upon excitation, which may result in characteristic absorption- or photoluminescence spectrum. Identification of such point defects by means of density functional theory (DFT) calculations with traditional (semi) local functionals suffers from two problems: the “band gap error” and the many-body nature of the electron-hole interaction of the excited state. We show that non local hybrid density functionals may effectively mimic the quasiparticle correction of the band edges and the defect levels within the band gap in group-IV semiconductors, thus they can effectively heal the “band gap error.” The electron-hole interaction can be calculated by time-dependent DFT (TD-DFT) method. Here, we apply TD-DFT on three topical examples: nitrogen-vacancy defect in diamond, silicon-vacancy and divacancy defects in silicon carbide that are candidates in effective development of solid-state quantum bits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
TABLE II.
FIG. 4.
TABLE III.
FIG. 5.

Similar content being viewed by others

REFERENCES

  1. C.G.V. de Walle and J. Neugebauer: First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004).

    Article  CAS  Google Scholar 

  2. S.K. Estreicher, D. Backlund, T.M. Gibbons, and A. Doçaj: Vibrational properties of impurities in semiconductors. Modell. Simul. Mater. Sci. Eng. 17, 084006 (2009).

    Article  CAS  Google Scholar 

  3. P.E. Blöchl: First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen. Phys. Rev. B Condens. Matter 62, 6158 (2000).

    Article  Google Scholar 

  4. N.T. Son, P. Carlsson, J. ul Hassan, E. Janzén, T. Umeda, J. Isoya, A. Gali, M. Bockstedte, N. Morishita, T. Ohshima, and H. Itoh: Divacancy in 4H-SiC. Phys. Rev. Lett. 96, 055501 (2006).

    Article  CAS  Google Scholar 

  5. T. Umeda, N.T. Son, J. Isoya, E. Janzén, T. Ohshima, N. Morishita, H. Itoh, A. Gali, and M. Bockstedte: Identification of the carbon antisite-vacancy pair in 4H-SiC. Phys. Rev. Lett. 96, 145501 (2006).

    Article  CAS  Google Scholar 

  6. D.M. Ceperley and B.J. Alder: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  7. J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximations for many–electron systems. Phys. Rev. B Condens. Matter 23, 5048 (1981).

    Article  CAS  Google Scholar 

  8. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  9. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  10. P. Deák: Modeling of defects in solids. Phys. Status Solidi B 217, 9 (2000).

    Article  Google Scholar 

  11. G.A. Baraff and M. Schlüter: Calculation of the total energy of charged point defects using the Green’s-function technique. Phys. Rev. B Condens. Matter 30, 1853 (1984).

    Article  CAS  Google Scholar 

  12. B. Aradi, A. Gali, P. Deák, J.E. Lowther, N.T. Son, E. Janzén, and W.J. Choyke: Ab initio density-functional supercell calculations of hydrogen defects in cubic SiC. Phys. Rev. B Condens. Matter 63, 245202 (2001).

    Article  CAS  Google Scholar 

  13. P. Deák, T. Frauenheim, and A. Gali: Limits of the scaled shift correction to levels of interstitial defects in semiconductors. Phys. Rev. B Condens. Matter 75, 153204 (2007).

    Article  CAS  Google Scholar 

  14. L. Hedin and S. Lundqvist: Solid State Physics. (Academic, 23, New York, NY, 1969).

    Google Scholar 

  15. J. Furthmüller, G. Cappellini, H.C. Weissker, and F. Bechstedt: GW self-energy calculations for systems with huge supercells. Phys. Rev. B Condens. Matter 66, 045110 (2002).

    Article  CAS  Google Scholar 

  16. Y. Ma, M. Rohlfing, and A. Gali: Excited states of the negatively charged nitrogen-vacancy color center in diamond. Phys. Rev. B Condens. Matter 81, 041204 (2010).

    Article  CAS  Google Scholar 

  17. M. Bockstedte, A. Marini, O. Pankratov, and A. Rubio: Many–Body effects in the excitation spectrum of a defect in SiC. Phys. Rev. Lett. 105, 026401 (2010).

    Article  CAS  Google Scholar 

  18. A. Gali, P. Deák, P. Ordejón, N.T. Son, E. Janzén, and W.J. Choyke: Aggregation of carbon interstitials in silicon carbide: A theoretical study. Phys. Rev. B Condens. Matter 68, 125201 (2003).

    Article  CAS  Google Scholar 

  19. A. Gali, P. Deák, E. Rauls, N.T. Son, I.G. Ivanov, F.H.C. Carlsson, E. Janzén, and W.J. Choyke: Correlation between the antisite pair and the DI center in SiC. Phys. Rev. B Condens. Matter 67, 155203 (2003).

    Article  CAS  Google Scholar 

  20. P. Deák, A. Gali, A. Sólyom, A. Buruzs, and T. Frauenheim: Electronic structure of boron-interstitial clusters in silicon. J. Phys. Condens. Matter 17, S2141 (2005).

    Article  CAS  Google Scholar 

  21. J.M. Knaup, P. Deák, T. Frauenheim, A. Gali, Z. Hajnal, and W.J. Choyke: Defects in SiO2 as the possible origin of near interface traps in the SiC/SiO2 system: A systematic theoretical study. Phys. Rev. B Condens. Matter 72, 115323 (2005).

    Article  CAS  Google Scholar 

  22. J.M. Knaup, P. Deák, T. Frauenheim, A. Gali, Z. Hajnal, and W.J. Choyke: Theoretical study of the mechanism of dry oxidation of 4H -SiC. Phys. Rev. B Condens. Matter 71, 235321 (2005).

    Article  CAS  Google Scholar 

  23. A. Gali, N.T. Son, and E. Janzén: Electrical characterization of metastable carbon clusters in SiC: A theoretical study. Phys. Rev. B Condens. Matter 73, 033204 (2006).

    Article  CAS  Google Scholar 

  24. A. Gali: Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys. Rev. B Condens. Matter 73, 245415 (2006).

    Article  CAS  Google Scholar 

  25. P. Deák, A. Buruzs, A. Gali, and T. Frauenheim: Strain-free polarization superlattice in silicon carbide: A theoretical investigation: Phys. Rev. Lett. 96, 236803 (2006).

    Article  CAS  Google Scholar 

  26. A. Gali, T. Hornos, N.T. Son, E. Janzén, and W.J. Choyke: Ab initio supercell calculations on aluminum-related defects in SiC. Phys. Rev. B Condens. Matter 75, 045211 (2007).

  27. R. Rurali, B. Aradi, T. Frauenheim, and A. Gali: Accurate single-particle determination of the band gap in silicon nanowires. Phys. Rev. B Condens. Matter 76, 113303 (2007).

    Article  CAS  Google Scholar 

  28. V.R. Saunders, R. Dovesi, C. Roetti, M. Causá, N.M. Harrison, R. Orlando, and C.M. Zicovich-Wilson: CRYSTAL98 User’s Manual (University of Torino, Torino, 1998).

    Google Scholar 

  29. A.D. Becke: Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104, 1040–1046 (1996).

    Article  CAS  Google Scholar 

  30. M. Ernzerhof and G.E. Scuseria: Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999).

    Article  CAS  Google Scholar 

  31. J. Heyd, G.E. Scuseria, and M. Ernzerhof: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  32. J. Heyd and G.E. Scuseria: Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys. 120, 7274–7280 (2004).

    Article  CAS  Google Scholar 

  33. G. Kresse and J. Hafner: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 49, 14251 (1994).

    Article  CAS  Google Scholar 

  34. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169 (1996).

    Article  CAS  Google Scholar 

  35. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  36. M. Marsman, J. Paier, A. Stroppa, and G. Kresse: Hybrid functionals applied to extended systems. J. Phys. Condens. Matter 20, 064201 (2008).

    Article  CAS  Google Scholar 

  37. A. Wadehra, J.W. Nicklas, and J.W. Wilkins: Band offsets of semiconductor heterostructures: A hybrid density functional study. Appl. Phys. Lett. 97, 092119 (2010).

    Article  CAS  Google Scholar 

  38. P. Deák, B. Aradi, T. Frauenheim, E. Janzén, and A. Gali: Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B Condens. Matter 81, 153203 (2010).

    Article  CAS  Google Scholar 

  39. H.P. Komsa, P. Broqvist, and A. Pasquarello: Alignment of defect levels and band edges through hybrid functionals: Effect of screening in the exchange term. Phys. Rev. B Condens. Matter 81, 205118 (2010).

    Article  CAS  Google Scholar 

  40. M.E. Casida: All-Electron Local and Gradient-Corrected Density-Functional Calculations of Nan Dipole Polarizabilities for n=1-6. In Recent Advances in Density Functional Theory; D.P. Chong, ed, World Scientific: Singapore, 1995; p. 155.

    Chapter  Google Scholar 

  41. L. Reining, V. Olevano, A. Rubio, and G. Onida: Excitonic effects in solids described by time-dependent density-functional theory. Phys. Rev. Lett. 88, 066404 (2002).

    Article  CAS  Google Scholar 

  42. G. Onida, L. Reining, and A. Rubio: Electronic excitations: Density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

    Article  CAS  Google Scholar 

  43. T. Uchino, M. Takahashi, and T. Yoko: Structure and formation mechanism of Ge E′ center from divalent defects in Ge-doped SiO2 glass. Phys. Rev. Lett. 84, 1475–1478 (2000).

    Article  CAS  Google Scholar 

  44. K. Raghavachari, D. Ricci, and G. Pacchioni: Optical properties of point defects in SiO2 from time-dependent density functional theory. J. Chem. Phys. 116, 825–831 (2002).

    Article  CAS  Google Scholar 

  45. A.S. Zyubin, A.M. Mebel, and S.H. Lin: Photoluminescence of oxygen-containing surface defects in germanium oxides: A theoretical study. J. Chem. Phys. 123, 044701 (2005).

    Article  CAS  Google Scholar 

  46. A.S. Zyubin, A.M. Mebel, M. Hayashi, H.C. Chang, and S.H. Lin: Quantum chemical modeling of photoadsorption properties of the nitrogen-vacancy point defect in diamond. J. Comput. Chem. 30, 131 (2009).

    Article  CAS  Google Scholar 

  47. A.S. Zyubin, A.M. Mebel, M. Hayashi, H.C. Chang, and S.H. Lin: Quantum chemical modeling of photoabsorption properties of two- and three-nitrogen vacancy point defects in diamond. J. Phys. Chem. C 113, 10432–10440 (2009).

    Article  CAS  Google Scholar 

  48. J. Paier, M. Marsman, and G. Kresse: Dielectric properties and excitons for extended systems from hybrid functionals. Phys. Rev. B Condens. Matter 78, 121201 (2008).

    Article  CAS  Google Scholar 

  49. P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953 (1994).

    Article  Google Scholar 

  50. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter 59, 1758 (1999).

    Article  CAS  Google Scholar 

  51. A. Gali, M. Fyta, and E. Kaxiras: Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors. Phys. Rev. B Condens. Matter 77, 155206 (2008).

    Article  CAS  Google Scholar 

  52. D. Sanchéz-Portal, P. Ordejón, E. Artacho, and J.M. Soler: Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65, 453 (1997).

    Article  Google Scholar 

  53. N. Troullier and J.L. Martins: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B Condens. Matter 43, 1993 (1991).

    Article  CAS  Google Scholar 

  54. A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras: Theory of spin-conserving excitation of the N–V–center in diamond. Phys. Rev. Lett. 103, 186404 (2009).

    Article  CAS  Google Scholar 

  55. R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel: Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 162, 169 (1989).

    Article  Google Scholar 

  56. K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T.L. Windus. Basis set exchange: A community database for computational sciences. J. Chem. Inf. Model. 47, 1045 (2007).

    Article  CAS  Google Scholar 

  57. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Borczyskowski: Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012 (1997).

    Article  CAS  Google Scholar 

  58. A. Drabenstedt, L. Fleury, C. Tietz, F. Jelezko, S. Kilin, A. Nizovtzev, and J. Wrachtrup: Low-temperature microscopy and spectroscopy on single defect centers in diamond. Phys. Rev. B Condens. Matter 60, 11503 (1999).

    Article  CAS  Google Scholar 

  59. F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup, A. Nizovtsev, and S. Kilin: Single spin states in a defect center resolved by optical spectroscopy. Appl. Phys. Lett. 81, 2160 (2002).

    Article  CAS  Google Scholar 

  60. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup: Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    Article  CAS  Google Scholar 

  61. F. Jelezko, T. Gaebel, I. Popa, M. Dunham, A. Gruber, and J. Wrachtrup: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  CAS  Google Scholar 

  62. R.J. Epstein, F. Mendoza, Y.K. Kato, and D.D. Awschalom: Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat. Phys. 1, 94 (2005).

    Article  CAS  Google Scholar 

  63. R. Hanson, F.M. Mendosa, R.J. Epstein, and D.D. Awschalom: Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006).

    Article  CAS  Google Scholar 

  64. R. Brouri, A. Beveratos, J.P. Poizat, and P. Gragier: Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294 (2000).

    Article  CAS  Google Scholar 

  65. A. Beveratos, R. Brouri, T. Gacoin, J.P. Poizat, and P. Grangier: Nonclassical radiation from diamond nanocrystals. Phys. Rev. A: At. Mol. Opt. Phys. 64, 061802(R) (2002).

    Article  CAS  Google Scholar 

  66. L. Childress, J.M. Taylor, A.S. Sørensen, and M.D. Lukin: Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006).

    Article  CAS  Google Scholar 

  67. L. Jiang, J.S. Hodges, J.R. Maze, P. Maurer, J.M. Taylor, D.G. Cory, P.R. Hemmer, R.L. Walsworth, A. Yacoby, A.S. Zibrov, and M.D. Lukin: Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 272 (2009).

    Article  CAS  Google Scholar 

  68. L. Childress, M.V. Gurudev Dutt, J.M. Taylor, A.S. Zibrov, F. Jelezko, J. Wrachtrup, P.R. Hemmer, and M.D. Lukin: Coherent dynamics of coupled electron and nuclear spinqubits in diamond. Science 314, 281 (2006).

    Article  CAS  Google Scholar 

  69. M.V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, and M.D. Lukin: Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 312 (2007).

    Google Scholar 

  70. L. du Preez: Ph.D. Dissertation, University of Witwatersrand, (1965).

  71. G. Davies and M.F. Hamer: Optical studies of the 1.945 eV Vibronic band in diamond. Proc. R. Soc. London Ser. A 348, 285 (1976).

    Article  CAS  Google Scholar 

  72. J.H.N. Loubser and J.P. van Wyk: Electron Spin Resonance in Annealed Type 1b Diamond. (Diamond Research (London), London, 1977; p. 4–7).

    Google Scholar 

  73. J.H.N. Loubser and J.A. van Wyk: Electron spin resonance in the study of diamond. Rep. Prog. Phys. 41, 1201 (1978).

    Article  CAS  Google Scholar 

  74. A.T. Collins: Luminescence decay time of the 1.945 eV centre in type Ib diamond. J. Phys. C: Solid State Phys. 16, 2177 (1983).

    Article  CAS  Google Scholar 

  75. J.P. Goss, R. Jones, S.J. Breuer, P.R. Briddon, and S. Öberg: The twelve- line 1.682 eV luminescence center in diamond and the vacancy—silicon complex. Phys. Rev. Lett. 77, 3041 (1996).

    Article  CAS  Google Scholar 

  76. J.A. Larsson and P. Delaney: Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory. Phys. Rev. B Condens. Matter 77, 165201 (2008).

    Article  CAS  Google Scholar 

  77. R.K. Watts: Point Defects in Crystals (Wiley-Interscience Publication, New York, 1977).

    Book  Google Scholar 

  78. J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G.V. de Walle, and D.D. Awschalom: Quantum computing with defects. Proc. Natl. Acad. Sci. U S A 107, 8513–8518 (2010).

    Article  CAS  Google Scholar 

  79. M. Vörös and A. Gali: Optical absorption of diamond nanocrystals from ab initio density-functional calculations. Phys. Rev. B Condens. Matter 80, 161411 (2009).

    Article  CAS  Google Scholar 

  80. E. Sörman, N.T. Son, W.M. Chen, O. Kordina, C. Hallin, and E. Janzén: Silicon vacancy related defect in 4H and 6H SiC. Phys. Rev. B Condens. Matter 61, 2613–2620 (2000).

    Article  Google Scholar 

  81. P.G. Baranov, A.P. Bundakova, A.A. Soltamova, S.B. Orlinskii, I.V. Borovykh, R. Zondervan, R. Verberk, and J. Schmidt: Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B Condens. Matter 83, 125203 (2011).

    Article  CAS  Google Scholar 

  82. N. Mizuochi, S. Yamasaki, H. Takizawa, N. Morishita, T. Ohshima, H. Itoh, and J. Isoya: Continuous-wave and pulsed EPR study of the negatively charged silicon vacancy with S = 3/2 and C symmetry in n -type 4H–SiC. Phys. Rev. B Condens. Matter 66, 235202 (2002).

    Article  CAS  Google Scholar 

  83. N. Mizuochi, S. Yamasaki, H. Takizawa, N. Morishita, T. Ohshima, H. Itoh, T. Umeda, and J. Isoya: Spin multiplicity and charge state of a silicon vacancy (TV2a) in 4H -SiC determined by pulsed ENDOR. Phys. Rev. B Condens. Matter 72, 235208 (2005).

    Article  CAS  Google Scholar 

  84. H. Isono, M. Tajima, N. Hoshino, and H. Sugimoto: Rapid Characterization of SiC Crystals by Full-Wafer Photoluminescence Imaging under Below-Gap Excitation. Mater. Sci. Forum 600, 545 (2009).

    Google Scholar 

  85. E. Janzén, A. Gali, P. Carlsson, A. Gällström, B. Magnusson, and N.T. Son: The silicon vacancy in SiC. Physica B 404, 4354 (2009).

    Article  CAS  Google Scholar 

  86. E. Janzén, A. Gali, A. Henry, I.G. Ivanov, B. Magnusson, and N.T. Son: Defects in SiC. in Defects in Microelectronic Materials and Devices D.M. Fleetwood, S.T. Pantelides, and R.D. Schrimpf, eds, Taylor & Francis Group: Boca Raton, FL, 2009; p. 615. Chapter 21.

    Google Scholar 

  87. B. Magnusson and E. Janzén: Optical characterization of deep level defects in SiC. Mater. Sci. Forum 483, 341 (2005).

    Article  Google Scholar 

  88. J.E. Lowther: Excited states of the vacancy in diamond. Phys. Rev. B Condens. Matter 48, 11592–11601 (1993).

    Article  CAS  Google Scholar 

  89. M. Vörös, P. Deák, T. Frauenheim, and A. Gali: The absorption spectrum of hydrogenated silicon carbide nanocrystals from ab initio calculations. Appl. Phys. Lett. 96, 051909 (2010).

    Article  CAS  Google Scholar 

  90. O. Madelung, ed: Semiconductors. Group IV Elements and II-V Compounds, (Data in Science and Technology) (Springer, Berlin, 1991).

    Google Scholar 

  91. M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, eds: Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, and SiGe (John Wiley and Sons, New York, NY, 2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Gali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gali, A. Excitation spectrum of point defects in semiconductors studied by time-dependent density functional theory. Journal of Materials Research 27, 897–909 (2012). https://doi.org/10.1557/jmr.2011.431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.431

Navigation