Abstract
A common fingerprint of the electrically active point defects in semiconductors is the transition among their localized defect states upon excitation, which may result in characteristic absorption- or photoluminescence spectrum. Identification of such point defects by means of density functional theory (DFT) calculations with traditional (semi) local functionals suffers from two problems: the “band gap error” and the many-body nature of the electron-hole interaction of the excited state. We show that non local hybrid density functionals may effectively mimic the quasiparticle correction of the band edges and the defect levels within the band gap in group-IV semiconductors, thus they can effectively heal the “band gap error.” The electron-hole interaction can be calculated by time-dependent DFT (TD-DFT) method. Here, we apply TD-DFT on three topical examples: nitrogen-vacancy defect in diamond, silicon-vacancy and divacancy defects in silicon carbide that are candidates in effective development of solid-state quantum bits.
Similar content being viewed by others
REFERENCES
C.G.V. de Walle and J. Neugebauer: First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004).
S.K. Estreicher, D. Backlund, T.M. Gibbons, and A. Doçaj: Vibrational properties of impurities in semiconductors. Modell. Simul. Mater. Sci. Eng. 17, 084006 (2009).
P.E. Blöchl: First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen. Phys. Rev. B Condens. Matter 62, 6158 (2000).
N.T. Son, P. Carlsson, J. ul Hassan, E. Janzén, T. Umeda, J. Isoya, A. Gali, M. Bockstedte, N. Morishita, T. Ohshima, and H. Itoh: Divacancy in 4H-SiC. Phys. Rev. Lett. 96, 055501 (2006).
T. Umeda, N.T. Son, J. Isoya, E. Janzén, T. Ohshima, N. Morishita, H. Itoh, A. Gali, and M. Bockstedte: Identification of the carbon antisite-vacancy pair in 4H-SiC. Phys. Rev. Lett. 96, 145501 (2006).
D.M. Ceperley and B.J. Alder: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).
J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximations for many–electron systems. Phys. Rev. B Condens. Matter 23, 5048 (1981).
J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter 45, 13244–13249 (1992).
J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
P. Deák: Modeling of defects in solids. Phys. Status Solidi B 217, 9 (2000).
G.A. Baraff and M. Schlüter: Calculation of the total energy of charged point defects using the Green’s-function technique. Phys. Rev. B Condens. Matter 30, 1853 (1984).
B. Aradi, A. Gali, P. Deák, J.E. Lowther, N.T. Son, E. Janzén, and W.J. Choyke: Ab initio density-functional supercell calculations of hydrogen defects in cubic SiC. Phys. Rev. B Condens. Matter 63, 245202 (2001).
P. Deák, T. Frauenheim, and A. Gali: Limits of the scaled shift correction to levels of interstitial defects in semiconductors. Phys. Rev. B Condens. Matter 75, 153204 (2007).
L. Hedin and S. Lundqvist: Solid State Physics. (Academic, 23, New York, NY, 1969).
J. Furthmüller, G. Cappellini, H.C. Weissker, and F. Bechstedt: GW self-energy calculations for systems with huge supercells. Phys. Rev. B Condens. Matter 66, 045110 (2002).
Y. Ma, M. Rohlfing, and A. Gali: Excited states of the negatively charged nitrogen-vacancy color center in diamond. Phys. Rev. B Condens. Matter 81, 041204 (2010).
M. Bockstedte, A. Marini, O. Pankratov, and A. Rubio: Many–Body effects in the excitation spectrum of a defect in SiC. Phys. Rev. Lett. 105, 026401 (2010).
A. Gali, P. Deák, P. Ordejón, N.T. Son, E. Janzén, and W.J. Choyke: Aggregation of carbon interstitials in silicon carbide: A theoretical study. Phys. Rev. B Condens. Matter 68, 125201 (2003).
A. Gali, P. Deák, E. Rauls, N.T. Son, I.G. Ivanov, F.H.C. Carlsson, E. Janzén, and W.J. Choyke: Correlation between the antisite pair and the DI center in SiC. Phys. Rev. B Condens. Matter 67, 155203 (2003).
P. Deák, A. Gali, A. Sólyom, A. Buruzs, and T. Frauenheim: Electronic structure of boron-interstitial clusters in silicon. J. Phys. Condens. Matter 17, S2141 (2005).
J.M. Knaup, P. Deák, T. Frauenheim, A. Gali, Z. Hajnal, and W.J. Choyke: Defects in SiO2 as the possible origin of near interface traps in the SiC/SiO2 system: A systematic theoretical study. Phys. Rev. B Condens. Matter 72, 115323 (2005).
J.M. Knaup, P. Deák, T. Frauenheim, A. Gali, Z. Hajnal, and W.J. Choyke: Theoretical study of the mechanism of dry oxidation of 4H -SiC. Phys. Rev. B Condens. Matter 71, 235321 (2005).
A. Gali, N.T. Son, and E. Janzén: Electrical characterization of metastable carbon clusters in SiC: A theoretical study. Phys. Rev. B Condens. Matter 73, 033204 (2006).
A. Gali: Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys. Rev. B Condens. Matter 73, 245415 (2006).
P. Deák, A. Buruzs, A. Gali, and T. Frauenheim: Strain-free polarization superlattice in silicon carbide: A theoretical investigation: Phys. Rev. Lett. 96, 236803 (2006).
A. Gali, T. Hornos, N.T. Son, E. Janzén, and W.J. Choyke: Ab initio supercell calculations on aluminum-related defects in SiC. Phys. Rev. B Condens. Matter 75, 045211 (2007).
R. Rurali, B. Aradi, T. Frauenheim, and A. Gali: Accurate single-particle determination of the band gap in silicon nanowires. Phys. Rev. B Condens. Matter 76, 113303 (2007).
V.R. Saunders, R. Dovesi, C. Roetti, M. Causá, N.M. Harrison, R. Orlando, and C.M. Zicovich-Wilson: CRYSTAL98 User’s Manual (University of Torino, Torino, 1998).
A.D. Becke: Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104, 1040–1046 (1996).
M. Ernzerhof and G.E. Scuseria: Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999).
J. Heyd, G.E. Scuseria, and M. Ernzerhof: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
J. Heyd and G.E. Scuseria: Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys. 120, 7274–7280 (2004).
G. Kresse and J. Hafner: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 49, 14251 (1994).
G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169 (1996).
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
M. Marsman, J. Paier, A. Stroppa, and G. Kresse: Hybrid functionals applied to extended systems. J. Phys. Condens. Matter 20, 064201 (2008).
A. Wadehra, J.W. Nicklas, and J.W. Wilkins: Band offsets of semiconductor heterostructures: A hybrid density functional study. Appl. Phys. Lett. 97, 092119 (2010).
P. Deák, B. Aradi, T. Frauenheim, E. Janzén, and A. Gali: Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B Condens. Matter 81, 153203 (2010).
H.P. Komsa, P. Broqvist, and A. Pasquarello: Alignment of defect levels and band edges through hybrid functionals: Effect of screening in the exchange term. Phys. Rev. B Condens. Matter 81, 205118 (2010).
M.E. Casida: All-Electron Local and Gradient-Corrected Density-Functional Calculations of Nan Dipole Polarizabilities for n=1-6. In Recent Advances in Density Functional Theory; D.P. Chong, ed, World Scientific: Singapore, 1995; p. 155.
L. Reining, V. Olevano, A. Rubio, and G. Onida: Excitonic effects in solids described by time-dependent density-functional theory. Phys. Rev. Lett. 88, 066404 (2002).
G. Onida, L. Reining, and A. Rubio: Electronic excitations: Density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).
T. Uchino, M. Takahashi, and T. Yoko: Structure and formation mechanism of Ge E′ center from divalent defects in Ge-doped SiO2 glass. Phys. Rev. Lett. 84, 1475–1478 (2000).
K. Raghavachari, D. Ricci, and G. Pacchioni: Optical properties of point defects in SiO2 from time-dependent density functional theory. J. Chem. Phys. 116, 825–831 (2002).
A.S. Zyubin, A.M. Mebel, and S.H. Lin: Photoluminescence of oxygen-containing surface defects in germanium oxides: A theoretical study. J. Chem. Phys. 123, 044701 (2005).
A.S. Zyubin, A.M. Mebel, M. Hayashi, H.C. Chang, and S.H. Lin: Quantum chemical modeling of photoadsorption properties of the nitrogen-vacancy point defect in diamond. J. Comput. Chem. 30, 131 (2009).
A.S. Zyubin, A.M. Mebel, M. Hayashi, H.C. Chang, and S.H. Lin: Quantum chemical modeling of photoabsorption properties of two- and three-nitrogen vacancy point defects in diamond. J. Phys. Chem. C 113, 10432–10440 (2009).
J. Paier, M. Marsman, and G. Kresse: Dielectric properties and excitons for extended systems from hybrid functionals. Phys. Rev. B Condens. Matter 78, 121201 (2008).
P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953 (1994).
G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter 59, 1758 (1999).
A. Gali, M. Fyta, and E. Kaxiras: Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors. Phys. Rev. B Condens. Matter 77, 155206 (2008).
D. Sanchéz-Portal, P. Ordejón, E. Artacho, and J.M. Soler: Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65, 453 (1997).
N. Troullier and J.L. Martins: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B Condens. Matter 43, 1993 (1991).
A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras: Theory of spin-conserving excitation of the N–V–center in diamond. Phys. Rev. Lett. 103, 186404 (2009).
R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel: Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 162, 169 (1989).
K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T.L. Windus. Basis set exchange: A community database for computational sciences. J. Chem. Inf. Model. 47, 1045 (2007).
A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Borczyskowski: Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012 (1997).
A. Drabenstedt, L. Fleury, C. Tietz, F. Jelezko, S. Kilin, A. Nizovtzev, and J. Wrachtrup: Low-temperature microscopy and spectroscopy on single defect centers in diamond. Phys. Rev. B Condens. Matter 60, 11503 (1999).
F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup, A. Nizovtsev, and S. Kilin: Single spin states in a defect center resolved by optical spectroscopy. Appl. Phys. Lett. 81, 2160 (2002).
F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup: Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).
F. Jelezko, T. Gaebel, I. Popa, M. Dunham, A. Gruber, and J. Wrachtrup: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).
R.J. Epstein, F. Mendoza, Y.K. Kato, and D.D. Awschalom: Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat. Phys. 1, 94 (2005).
R. Hanson, F.M. Mendosa, R.J. Epstein, and D.D. Awschalom: Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006).
R. Brouri, A. Beveratos, J.P. Poizat, and P. Gragier: Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294 (2000).
A. Beveratos, R. Brouri, T. Gacoin, J.P. Poizat, and P. Grangier: Nonclassical radiation from diamond nanocrystals. Phys. Rev. A: At. Mol. Opt. Phys. 64, 061802(R) (2002).
L. Childress, J.M. Taylor, A.S. Sørensen, and M.D. Lukin: Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006).
L. Jiang, J.S. Hodges, J.R. Maze, P. Maurer, J.M. Taylor, D.G. Cory, P.R. Hemmer, R.L. Walsworth, A. Yacoby, A.S. Zibrov, and M.D. Lukin: Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 272 (2009).
L. Childress, M.V. Gurudev Dutt, J.M. Taylor, A.S. Zibrov, F. Jelezko, J. Wrachtrup, P.R. Hemmer, and M.D. Lukin: Coherent dynamics of coupled electron and nuclear spinqubits in diamond. Science 314, 281 (2006).
M.V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, and M.D. Lukin: Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 312 (2007).
L. du Preez: Ph.D. Dissertation, University of Witwatersrand, (1965).
G. Davies and M.F. Hamer: Optical studies of the 1.945 eV Vibronic band in diamond. Proc. R. Soc. London Ser. A 348, 285 (1976).
J.H.N. Loubser and J.P. van Wyk: Electron Spin Resonance in Annealed Type 1b Diamond. (Diamond Research (London), London, 1977; p. 4–7).
J.H.N. Loubser and J.A. van Wyk: Electron spin resonance in the study of diamond. Rep. Prog. Phys. 41, 1201 (1978).
A.T. Collins: Luminescence decay time of the 1.945 eV centre in type Ib diamond. J. Phys. C: Solid State Phys. 16, 2177 (1983).
J.P. Goss, R. Jones, S.J. Breuer, P.R. Briddon, and S. Öberg: The twelve- line 1.682 eV luminescence center in diamond and the vacancy—silicon complex. Phys. Rev. Lett. 77, 3041 (1996).
J.A. Larsson and P. Delaney: Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory. Phys. Rev. B Condens. Matter 77, 165201 (2008).
R.K. Watts: Point Defects in Crystals (Wiley-Interscience Publication, New York, 1977).
J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G.V. de Walle, and D.D. Awschalom: Quantum computing with defects. Proc. Natl. Acad. Sci. U S A 107, 8513–8518 (2010).
M. Vörös and A. Gali: Optical absorption of diamond nanocrystals from ab initio density-functional calculations. Phys. Rev. B Condens. Matter 80, 161411 (2009).
E. Sörman, N.T. Son, W.M. Chen, O. Kordina, C. Hallin, and E. Janzén: Silicon vacancy related defect in 4H and 6H SiC. Phys. Rev. B Condens. Matter 61, 2613–2620 (2000).
P.G. Baranov, A.P. Bundakova, A.A. Soltamova, S.B. Orlinskii, I.V. Borovykh, R. Zondervan, R. Verberk, and J. Schmidt: Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B Condens. Matter 83, 125203 (2011).
N. Mizuochi, S. Yamasaki, H. Takizawa, N. Morishita, T. Ohshima, H. Itoh, and J. Isoya: Continuous-wave and pulsed EPR study of the negatively charged silicon vacancy with S = 3/2 and C3ν symmetry in n -type 4H–SiC. Phys. Rev. B Condens. Matter 66, 235202 (2002).
N. Mizuochi, S. Yamasaki, H. Takizawa, N. Morishita, T. Ohshima, H. Itoh, T. Umeda, and J. Isoya: Spin multiplicity and charge state of a silicon vacancy (TV2a) in 4H -SiC determined by pulsed ENDOR. Phys. Rev. B Condens. Matter 72, 235208 (2005).
H. Isono, M. Tajima, N. Hoshino, and H. Sugimoto: Rapid Characterization of SiC Crystals by Full-Wafer Photoluminescence Imaging under Below-Gap Excitation. Mater. Sci. Forum 600, 545 (2009).
E. Janzén, A. Gali, P. Carlsson, A. Gällström, B. Magnusson, and N.T. Son: The silicon vacancy in SiC. Physica B 404, 4354 (2009).
E. Janzén, A. Gali, A. Henry, I.G. Ivanov, B. Magnusson, and N.T. Son: Defects in SiC. in Defects in Microelectronic Materials and Devices D.M. Fleetwood, S.T. Pantelides, and R.D. Schrimpf, eds, Taylor & Francis Group: Boca Raton, FL, 2009; p. 615. Chapter 21.
B. Magnusson and E. Janzén: Optical characterization of deep level defects in SiC. Mater. Sci. Forum 483, 341 (2005).
J.E. Lowther: Excited states of the vacancy in diamond. Phys. Rev. B Condens. Matter 48, 11592–11601 (1993).
M. Vörös, P. Deák, T. Frauenheim, and A. Gali: The absorption spectrum of hydrogenated silicon carbide nanocrystals from ab initio calculations. Appl. Phys. Lett. 96, 051909 (2010).
O. Madelung, ed: Semiconductors. Group IV Elements and II-V Compounds, (Data in Science and Technology) (Springer, Berlin, 1991).
M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, eds: Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, and SiGe (John Wiley and Sons, New York, NY, 2001).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gali, A. Excitation spectrum of point defects in semiconductors studied by time-dependent density functional theory. Journal of Materials Research 27, 897–909 (2012). https://doi.org/10.1557/jmr.2011.431
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2011.431