Skip to main content
Log in

Surface irradiation and materials processing using polyatomic cluster ion beams

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We developed a polyatomic cluster ion beam system for materials processing, and polyatomic clusters of materials such as alcohol and water were produced by an adiabatic expansion phenomenon. In this article, cluster formation is discussed using thermodynamics and fluid dynamics. To investigate the interactions of polyatomic cluster ions with solid surfaces, various kinds of substrates such as Si(100), SiO2, mica, polymethyl methacrylate, and metals were irradiated by ethanol, methanol, and water cluster ion beams. To be specific, chemical reactions between radicals of polyatomic molecules and surface Si atoms were investigated, and low-irradiation damage as well as high-rate sputtering was carried out on the Si(100) surfaces. Furthermore, materials processing methods including high-rate sputtering, surface modification, and micropatterning were demonstrated with ethanol and water cluster ion beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
TABLE II.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.
FIG. 16.
FIG. 17.
FIG. 18.
FIG. 19.

Similar content being viewed by others

References

  1. H. Bernas and R.E. de Lamaestre: Ion beam-induced quantum dot synthesis in glass, in Ion-Beam-Based Nanofabrication, edited by D. Ila, J. Baglin, N. Kishimoto, and P.K. Chu (Mater. Res. Soc. Proc. 1020, Warrendale, PA, 2007), p. 101.

    CAS  Google Scholar 

  2. W. Vandervorst and J.L. Everaert: E. Rosseel, M. Jurczak, T. Hoffman, P. Eyben, J. Mody, G. Zschatzsch, S. Koelling, M. Gilbert, T. Poon, J. Del Agua Borniquel, M. Foad, R. Duffy, and B.J. Pawlak: Conformal doping of FINFETs: A fabrication and metrology challenge, in Proceedings of the 17th International Conference on Ion Implantation Technology IIT2008, edited by E.G. Seebauer, S.B. Felch, A. Jain, and Y.V. Kondratenko (AIP Conf. Proc. 1066, Melville, New York, 2008), p. 449.

    Article  CAS  Google Scholar 

  3. L. Bardos and H. Barankova: Plasma processes at atmospheric and low pressures. Vacuum 83, 522 (2009).

    Article  CAS  Google Scholar 

  4. G. Brauer, B. Szyszka, M. Vergohl, and R. Bandorf: Magnetron sputtering—milestones of 30 years. Vacuum 83, 1354 (2010).

    Article  CAS  Google Scholar 

  5. J. Orloff, M. Utlaut, and L. Swanson: High Resolution Focused Ion Beams: FIB and Its Applications (Kluwer Academic/Plenum Publishers, New York, 2003).

    Book  Google Scholar 

  6. D.J. Stokes, L. Roussel, O. Wilhelmi, L.A. Giannuzzi, and D.H.W. Hubert: Recent advances in FIB technology for nano-prototyping and nano-characterization, in Ion-Beam-Based Nanofabrication, edited by D. Ila, J. Baglin, N. Kishimoto, and P.K. Chu (Mater. Res. Soc. Proc. 1020, Warrendale, PA, 2007), p. 15.

    CAS  Google Scholar 

  7. C.M. Lyneis, D. Leitner, D.S. Toda, G. Sabbi, S. Prestemon, S. Caspi, and P. Ferracin: Fourth generation electron cyclotron resonance ion sources. Rev. Sci. Instrum. 79, 02A321 (2008).

    Article  CAS  Google Scholar 

  8. J. Peters: New developments in multicusp H- ion sources for high energy accelerators. Rev. Sci. Instrum. 79, 02A515 (2008).

    CAS  Google Scholar 

  9. R.S. Hemsworth, A. Tanga and V. Antoni: Status of the ITER neutral beam injection system. Rev. Sci. Instrum. 79, 02C109 (2008).

    Article  CAS  Google Scholar 

  10. J. Ishikawa: Negative-ion source applications. Rev. Sci. Instrum. 79, 02C506 (2008).

    Article  CAS  Google Scholar 

  11. W. Jacob and J. Roth: Chemical Sputtering. In R. Behrisch, W. Eckstein (Eds.) Sputtering by Particle Bombardment, Top. Appl. Phys. 110 (Springer, Berlin/Heidelberg/New York, 2007) p. 329.

    Chapter  Google Scholar 

  12. P.H. Buffat and J-P. Borel: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).

    Article  CAS  Google Scholar 

  13. M.D. Morse: Clusters of transition-metal atoms. Chem. Rev. 86, 1049 (1986).

    Article  CAS  Google Scholar 

  14. H. Hsieh and R.S. Averback: Molecular-dynamics investigation of cluster-beam deposition. Phys. Rev. B 42, 5365 (1990).

    Article  CAS  Google Scholar 

  15. R.S. Averback, M. Ghaly, and H. Zhu: Cluster solid interactions—A molecular-dynamics investigation. Radiat. Eff. Defects Solids 130-, 211 (1994).

    Article  Google Scholar 

  16. Z. Insepov, I. Yamada, and M. Sosnowski: Sputtering and smoothing of metal surface with energetic gas cluster beams. Mater. Chem. Phys. 54, 234 (1998).

    Article  CAS  Google Scholar 

  17. M. Moseler, O. Rattunde, J. Nordiek, and H. Haberland: On the origin of surface smoothing by energetic cluster impact: Molecular dynamics simulation and mesoscopic modeling. Nucl. Instrum. Methods B 164-, 522 (2000).

    Article  Google Scholar 

  18. H. Yasumatsu and T. Kondow: Reactive scattering of clusters and cluster ions from solid surfaces. Rep. Prog. Phys. 66, 1783 (2003).

    Article  CAS  Google Scholar 

  19. G.H. Takaoka, K. Nakayama, T. Okada, and M. Kawashita: Size analysis of ethanol cluster ions and their sputtering effects on solid surfaces, in Proceedings of the 16th International Conference on Ion Implantation Technology, edited by K.J. Kirkby, R. Gwilliam, A. Smith, and D. Chivers (AIP Conf. Proc., 2006), p. 321.

    Google Scholar 

  20. G.H. Takaoka, M. Kawashita, and T. Okada: Irradiation effects of methanol cluster ion beams on solid surfaces, in Ion-Beam-Based Nanofabrication, edited by D. Ila, J. Baglin, N. Kishimoto, and P.K. Chu (Mater. Res. Soc. Proc. 1020, Warrendale, PA, 2007), p. 159.

    CAS  Google Scholar 

  21. G.H. Takaoka, M. Kawashita, and T. Okada: Physical and chemical sputtering of solid surfaces irradiated by ethanol cluster ion beams. Rev. Sci. Instrum. 79, 02C503 (2008).

    Google Scholar 

  22. H. Ryuto, K. Tada, and G.H. Takaoka: Irradiation effects on slid surfaces by water cluster ion beams. Vacuum 84, 501 (2010).

    Article  CAS  Google Scholar 

  23. G.H. Takaoka, H. Noguchi, K. Nakayama, Y. Hironaka, and M. Kawashita: Fundamental characteristics of liquid cluster ion source for surface modification. Nucl. Instrum. Methods B 237, 402 (2005).

    Article  CAS  Google Scholar 

  24. H. Haberland: Clusters of Atoms and Molecules (Springer-Verlag, Berlin, 1994).

    Book  Google Scholar 

  25. J. Merikanto, H. Vehkamaki, and E. Zapadinsky: Monte Carlo simulations of critical cluster sizes and nucleation rates of water. Chem. Phys. 121, 914 (2004).

    CAS  Google Scholar 

  26. P. Wegener: Nonequilibrium Flows (Marcel Dekker, New York, 1969).

    Google Scholar 

  27. R.C. Weast and M.J. Astle (Eds.): CRC Handbook of Physics and Chemistry, 63rd ed. (CRC Press, Boca Raton, FL, 1982).

    Google Scholar 

  28. R.C. Tolman: The effect of droplet size on surface tension. Chem. Phys. 17, 333 (1949).

    CAS  Google Scholar 

  29. O.F. Hagena and W.J. Obert: Cluster formation in expanding supersonic jets–effect of pressure, temperature, nozzle size, and test gas. Chem. Phys. 56, 1793 (1972).

    CAS  Google Scholar 

  30. O.F. Hagena: Scaling laws for condensation in nozzle flows. Phys. Fluids 17, 894 (1974).

    Article  Google Scholar 

  31. O.F. Hagena: Cluster ion sources. Rev. Sci. Instrum. 63, 2374 (1992).

    Article  CAS  Google Scholar 

  32. P. Borowski, J. Jaroniec, T. Janowski, and K. Wolinski: Quantum cluster equilibrium theory treatment of hydrogen-bonded liquids: Water, methanol and ethanol. Mol. Phys. 101, 1413 (2003).

    Article  CAS  Google Scholar 

  33. Z. Insepov, M. Sosnowski, and I. Yamada: Molecular-dynamics simulation of metal surface sputtering by energetic rare-gas cluster impact. Trans. Mater. Res. Soc. Jpn. 17, 111 (1994).

    CAS  Google Scholar 

  34. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann: Introduction to Ceramics (John Wiley & Sons Inc., New York, 1976) Chap. 9.

    Google Scholar 

  35. Z. Insepov, M. Sosnowski, G.H. Takaoka, and I. Yamada: Molecular dynamics simulation of the effects of energetic cluster ion impact on solid surface, in Materials Synthesis and Processing Using Ion Beams, edited by R.J. Culbertson, O.W. Holland, K.S. Jones, and K. Maex (Mater. Res. Soc. Proc. 316, 1994), p. 999.

    CAS  Google Scholar 

  36. Z. Insepov and I. Yamada: Molecular-dynamics simulation of surface sputtering by energetic rare-gas cluster impact. Surf. Rev. Lett. 3, 1023 (1996).

    Article  CAS  Google Scholar 

  37. H. Ryuto, R. Ozaki, H. Mukai, and G.H. Takaoka: Interaction of ethanol cluster ion beam with silicon surface. Vacuum 84, 1419 (2010).

    Article  CAS  Google Scholar 

  38. L. Maissel: in Handbook of Thin Film Technology, edited by L.I. Maissel and R. Glang (McGraw-Hill, New York, 1970) Chap. 4.

  39. K.L. Chopra: Thin Film Deposition Technology. Thin Film Phenomena (McGraw-Hill, New York, 1979) Chap. 2.

    Google Scholar 

  40. F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler: Large area smoothing of optical surfaces by low-energy ion beams. Thin Solid Films 459, 100 (2004).

    Article  CAS  Google Scholar 

  41. W. Eckstein: Sputtering Yields. In R. Behrisch and W. Eckstein (Eds.) Sputtering by Particle Bombardment, Top. Appl. Phys. 110 (Springer, Berlin/Heidelberg/New York, 2007) p. 33.

    Chapter  Google Scholar 

  42. T. Seki, T. Kaneko, D. Takeuchi, T. Aoki, J. Matsuo, Z. Insepov, and I. Yamada: STM observation of HOPG surfaces irradiated with Ar cluster ions. Nucl. Instrum. Methods B 121, 498 (1997).

    Article  CAS  Google Scholar 

  43. S.T. Picraux and L.E. Pope: Tailored surface modification by ion implantation and laser treatment. Science 226, 615 (1984).

    Article  CAS  Google Scholar 

  44. R. Langer: Perspectives: Drug delivery-drugs on target. Science 293, 58 (2001).

    Article  CAS  Google Scholar 

  45. H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007).

    Article  CAS  Google Scholar 

  46. M. Carbone, M.N. Piancastelli, J.J. Paggel, C. Weindel, and K. Horn: A high-resolution photoemission study of ethanol adsorption on Si(111)-(7×7). Surf. Sci. 412-, 441 (1998).

    Article  Google Scholar 

  47. M.P. Casaletto, R. Zanoni, M. Carbone, M.N. Piancastelli, L. Aballe, K. Weiss, and K. Horn: High-resolution photoemission study of ethanol on Si(100)2×1. Surf. Sci. 447, 237 (2000).

    Article  CAS  Google Scholar 

  48. P.L. Silvestrelli: Adsorption of ethanol on Si(100) from first-principles calculations. Surf. Sci. 552, 17 (2004).

    Article  CAS  Google Scholar 

  49. G.G. Roberts (Ed.): Langmuir-Blodgett Films (Plenum, New York, 1990) Chap.7.

    Book  Google Scholar 

  50. S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, and A.M. Belcher: Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665 (2000).

    Article  CAS  Google Scholar 

  51. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, and G.M. Whitesides: Self-assembled monolayers of thiolates as a form of nanotechnology. Chem. Rev. 105, 1103 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Quantum Science and Engineering Center of Kyoto University for the Rutherford backscattering spectrometry (RBS) measurement. Also, this work was partially supported by Nanotechnology Support Project of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gikan H. Takaoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takaoka, G.H., Ryuto, H. & Takeuchi, M. Surface irradiation and materials processing using polyatomic cluster ion beams. Journal of Materials Research 27, 806–821 (2012). https://doi.org/10.1557/jmr.2011.426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.426

Navigation